
 

 
 

 
 

Technical Report 113 
 
 
 

A New Generalized Heterogeneous 
Data Model (GHDM) to Jointly Model 
Mixed Types of Dependent Variables 
 
 
 
 
Chandra R. Bhat 
Center for Transportation Research 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
September 2015 

 
 
 
 

 
 

  
 
 
 
 
 
 
 
 
 
 



 

Data-Supported Transportation Operations & Planning Center 
(D-STOP) 

A Tier 1 USDOT University Transportation Center at The University of Texas at Austin 

 
 

    
 
 
D-STOP is a collaborative initiative by researchers at the Center for Transportation 
Research and the Wireless Networking and Communications Group at The University of 
Texas at Austin. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
DISCLAIMER 
The contents of this report reflect the views of the authors, who are responsible for the facts and the 
accuracy of the information presented herein. This document is disseminated under the sponsorship of 
the U.S. Department of Transportation’s University Transportation Centers Program, in the interest of 
information exchange. The U.S. Government assumes no liability for the contents or use thereof. 
 



 

 Technical Report Documentation Page  
1. Report No. 

D-STOP/2016/113 
 2. Government Accession No. 

 
 3. Recipient's Catalog No. 

 
 4. Title and Subtitle 

A New Generalized Heterogeneous Data Model (GHDM) to Jointly 
Model Mixed Types of Dependent Variables 

 5. Report Date 

September 2015 
 6. Performing Organization Code 

 
 7. Author(s) 

Chandra R. Bhat 
 

 8. Performing Organization Report No. 

Report 113 

9. Performing Organization Name and Address 

Data-Supported Transportation Operations & Planning Center (D-
STOP) 
The University of Texas at Austin 
1616 Guadalupe Street, Suite 4.202 
Austin, Texas 78701 

10. Work Unit No. (TRAIS) 

 

11. Contract or Grant No. 

DTRT13-G-UTC58 

12. Sponsoring Agency Name and Address 

Data-Supported Transportation Operations & Planning Center (D-
STOP) 
The University of Texas at Austin 
1616 Guadalupe Street, Suite 4.202 
Austin, Texas 78701 

13. Type of Report and Period Covered 

 
 
14. Sponsoring Agency Code 

15. Supplementary Notes 

Supported by a grant from the U.S. Department of Transportation, University Transportation Centers 
Program. 
16. Abstract 

This paper formulates a generalized heterogeneous data model (GHDM) that jointly handles mixed types 
of dependent variables—including multiple nominal outcomes, multiple ordinal variables, and multiple 
count variables, as well as multiple continuous variables—by representing the covariance relationships 
among them through a reduced number of latent factors. Sufficiency conditions for identification of the 
GHDM parameters are presented. The maximum approximate composite marginal likelihood (MACML) 
method is proposed to estimate this jointly mixed model system. This estimation method provides 
computational time advantages since the dimensionality of integration in the likelihood function is 
independent of the number of latent factors. The study undertakes a simulation experiment within the 
virtual context of integrating residential location choice and travel behavior to evaluate the ability of the 
MACML approach to recover parameters. The simulation results show that the MACML approach 
effectively recovers underlying parameters, and also that ignoring the multi-dimensional nature of the 
relationship among mixed types of dependent variables can lead not only to inconsistent parameter 
estimation, but also have important implications for policy analysis. 
17. Key Words 

Latent factors, big data analytics, high 
dimensional data, MACML estimation 
approach, mixed dependent variables, 
structural equations models, integrated land 
use-transportation modeling, factor analysis 

18. Distribution Statement 

No restrictions. This document is available to the public 
through NTIS (http://www.ntis.gov): 

National Technical Information Service 
5285 Port Royal Road 
Springfield, Virginia 22161

19. Security Classif.(of this report) 

Unclassified 
20. Security Classif.(of this page) 

Unclassified 
21. No. of Pages 

58 
22. Price 

 
 Form DOT F 1700.7 (8-72)      Reproduction of completed page authorized 

 
 



iv 

Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the 
facts and the accuracy of the information presented herein. Mention of trade names or 
commercial products does not constitute endorsement or recommendation for use. 

 
 

Acknowledgements 

This research was partially supported by the U.S. Department of Transportation through 
the Data-Supported Transportation Operations and Planning (D-STOP) Tier 1 University 
Transportation Center. The author would also like to acknowledge support from a 
Humboldt Research Award from the Alexander von Humboldt Foundation, Germany. 
Finally, the author is grateful to Lisa Macias for her help in formatting this document, to 
Subodh Dubey and Xuemei Fu for help with the simulation runs, and two anonymous 
referees who provided useful comments on an earlier version of the paper.   

 
. 

  



v 

Table of Contents 

Chapter 1. Introduction ......................................................................................................1 

Chapter 2. The GHDM Formulation ................................................................................5 

2.1 Latent Variable SEM ....................................................................................................7 

2.2 Latent Variable Measurement Equation Model Components ......................................7 

Chapter 3. The Model System Identification and Estimation ......................................13 

3.1 Model Identification ...................................................................................................13 

3.2 Model Estimation .......................................................................................................17 

3.3 The Joint Mixed Model System and the MACML Estimation Approach .................18 

3.4 Positive Definiteness ..................................................................................................22 

Chapter 4. Simulation Experiment ..................................................................................23 

4.1 Experimental Design ..................................................................................................24 

4.2 The Structural Equation System .................................................................................24 

4.3 The Measurement Equation System ...........................................................................27 

4.4 Data Generation Process ............................................................................................35 

4.5 Performance Evaluation .............................................................................................36 

4.6 Simulation Results ......................................................................................................37 

4.7 Procedure for Treatment Effects Based on Residential Choice .................................46 

References ..........................................................................................................................48 
 

  



vi 

List of Illustrations 

Figure 1: Diagrammatic representation of the structural equation............................................26 

Figure 2a: Diagrammatic representation of the measurement equation for the non-
nominal variables ...............................................................................................................28 

Figure 2b: Diagrammatic representation of the measurement equation for the nominal 
variables .............................................................................................................................29 

Figure 2c: Endogeneous effects ................................................................................................30 

 

List of Tables 

Table 1: Matrix Notation, Description, and Dimension ..............................................................5 

Table 2: Simulation Results for the 1000-Observations Case with 200 Datasets .....................40 

Table 3: Simulation Results for the 2000-Observations Case with 200 Datasets .....................42 

Table 4: Simulation Results for the 3000-Observations Case with 200 Datasets .....................44 
 

 
 
 
 
 
 
 
 
 



 

1 

 Chapter 1. Introduction 

The joint modeling of data with mixed types of dependent variables (including ordered-
response or ordinal variables, unordered-response or nominal variables, count variables, 
and continuous variables) is of interest in several fields, including biology, 
developmental toxicology, finance, economics, epidemiology, social science, and 
transportation (see a good synthesis of applications in De Leon and Chough, 2013). For 
instance, in the clinical biology field, alternative treatments for a specific condition are 
assessed based on binary, ordered, and continuous indicators of the treatment’s after-
effects; this approach has been used to assess the effectiveness of depression medication 
in reducing the occurrence, frequency, and intensity of depression (such as in 
Gueorguieva and Sanacora, 2006). In the health field, in addition to binary, count, and 
continuous variables related to the occurrence, frequency, and intensity, respectively, of 
specific health problems, it is not uncommon to obtain ordinal information on quality of 
life outcomes/perceptions. In the toxicology field, the focus is on regulating the use of 
chemical and pharmaceutial drugs (Sutton et al., 2000). Typically, varying quantities of a 
drug are administered to mice; the effects on their offspring are studied in terms of 
combinations of discrete outcomes (such as the presence of congenital deformations) and 
continuous outcomes (such as birth weight). In the transportation field, households that 
are not auto-oriented are likely to locate in transit- and pedestrian-friendly neighborhoods 
that are characterized by mixed and high-density land use; pedestrian-oriented design in 
such communities may also further structurally reduce motorized vehicle miles of travel. 
If that is the case, then it is likely that the choices of residential location (nominal 
variable), vehicle ownership (count), and vehicle miles of travel (continuous) are being 
made jointly as a bundle (see, for example, Bhat et al., 2014a).  

The interest in mixed model systems has been spurred particularly by the recent 
availability of high-dimensional heterogeneous data with complex dependence structures, 
thanks to technology that allows the collection and archival of voluminous amounts of 
data (“big data”). Unlike standard correlated linear data that can be analyzed using 
traditional multivariate linear regression models, the presence of non-commensurate 
outcomes creates difficulty because of the absence of a convenient multivariate 
distribution to jointly (and directly) represent the relationship between discrete and 
continuous outcomes. Several approaches have been developed to handle such situations. 
The first and simplest is, of course, to simply ignore the dependence and estimate 
separate models. However, such an approach is inefficient in estimating covariate effects 
for each outcome because it fails to borrow information on other outcomes, and is 
limiting in its ability to answer intrinsically multivariate questions such as the effect of a 
covariate on a multidimensional outcome (Teixeira-Pinto and Harezlak, 2013). Besides, 
joint analysis of mixed outcomes obviates the need for multiple tests and facilitates 
global tests, offering superior power in testing and better control of type I error rates (De 
Leon and Zhu, 2008). But, more importantly, if some endogenous outcomes are used to 
explain other endogenous outcomes (such as examining the effect of density of residence 
on auto-ownership model), and if the outcomes are not modeled jointly to recognize the 
presence of unobserved exogenous variable effects, the result is inconsistent estimation of 
the effects of one endogenous outcome on another (see Bhat and Guo, 2007, and 
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Mokhtarian and Cao, 2008). A second common approach to joint mixed outcome 
modeling originates in the general location model (GLOM), which assumes an arbitrary 
marginal distribution for the discrete outcomes and a conditional (on the discrete 
component) normality assumption for the continuous outcomes (De Leon and Chough, 
2013). However, the GLOM is not suitable for ordinal outcome variables and does not 
accommodate dependence between nominal and ordinal outcomes. A third “reverse-
factorization” approach is to employ a latent variable representation for binary/ordinal 
outcomes, and assume a multivariate normal (MVN) distribution for the continuous 
outcomes and the latent variables underlying the binary/ordinal outcomes. Then, the joint 
distribution is derived using a marginal distribution of the continuous outcomes and the 
conditional distribution of the latent variables (given the continuous variables) underlying 
the binary/ordinal outcomes. This approach is referred to as the conditional grouped 
continuous model (CGCM) by De Leon and Chough (2013). However, this approach 
cannot be directly extended to the case of nominal outcomes, since nominal outcomes do 
not arise from the partitioning of a single latent variable using thresholds (as is the case 
for binary/ordinal outcomes). So, De Leon and Carriere (2007) and De Leon et al. (2011) 
proposed an extended factorization approach, which they label as the general mixed data 
model (GMDM), to accommodate nominal outcomes. They use a GLOM for the joint 
distribution of the nominal and continuous outcomes, and a CGCM for the joint 
distribution of the ordinal and continuous outcomes. Specifically, the GMDM uses a 
multinomial distribution for the marginal distribution of the possible multidimensional 
discrete states obtained from the combinatorics of a set of nominal outcomes, followed by 
a conditional MVN distribution for the latent variables (underlying the ordinal outcomes) 
and the continuous outcomes. The mean vector for this latter conditional MVN 
distribution is specified to be a function of the multidimensional discrete state, 
engendering an association between the nominal discrete outcomes and the 
ordinal/continuous outcomes. However, the covariance matrix of the conditional MVN 
distribution is constant across the nominal discrete states. A further problem with the 
GMDM is that the number of multidimensional discrete states explodes as the number of 
nominal discrete outcomes increases, and as the number of elemental categories within 
each nominal discrete outcome increases. Besides, the GMDM (like the GLOM) resorts 
to a factorization approach in which an artificial hierarchy is implicitly assumed. In this 
hierarchy, the multidimensional discrete outcomes are intermediate responses and the 
ordinal/continuous outcomes are the ultimate responses (see Wu et al., 2013).  

Independent from the work discussed above, a fourth approach originates in the 
economics and transportation fields, wherein mixed models with nominal outcomes are 
based on latent variable representations of nominal outcomes. Surprisingly, such studies 
are rarely mentioned in papers in the statistical field that deal with mixed outcomes. The 
studies in this strand may be viewed as extensions of the CGCM approach to the case of 
nominal outcomes, except that each nominal outcome is represented by a series of latent 
variables. An early example of such a multivariate model may be found in Keane (1992), 
who considered one nominal variable and one continuous variable. However, only 
relatively recently has this methodology been extended to include mixed nominal, binary, 
ordinal, count, and continuous variables (for example, see Paleti et. al., 2013 and Bhat et 
al., 2014a). The resulting mixed models may be viewed as an alternative to the GMDM, 
and have the advantage that all outcomes are tied based on their latent or observed 
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continuous variable representations (rather than using different types of linkages for 
different types of outcomes, as in the GMDM). Further, these models treat the mixed 
outcomes symmetrically rather than imposing any form of hierarchy. The models 
typically assume an MVN distribution over the entire set of latent and observed 
continuous variables characterizing the many types of outcomes. A variant of this 
methodology uses a Gaussian copula function to tie the latent and observed continuous 
variables if the variables have different marginal distributions, though this approach has 
been confined to scenarios without a nominal outcome (see, for example, Wu et al., 
2013). Another variant introduces random error terms linearly in the latent and observed 
continuous variable equations associated with the discrete outcomes and continuous 
outcomes, respectively. The underlying continuous variables are considered to be 
independent, conditional on these random error terms. Then, if these random error terms 
are common or correlated, the result is an association structure among the mixed 
outcomes. Such a specification falls under the label of a multivariate generalized linear 
latent and mixed model (GLLAMM), and is particularly helpful when considering 
clustering effects (due to multiple observations from the same person or due to spatial 
dependency) in addition to correlation across mixed outcomes (see, for example, Faes et 
al., 2009 and Bhat et al., 2014a) . An extension of this approach that accommodates 
clustering as well as an association structure among mixed outcomes (that is, mixed 
outcomes are independent, conditional on appropriately specified latent variables) is 
referred to as the item response theory (IRT) model in the literature (see Bartholomew et 
al., 2011 and Feddag, 2013). However, again, these GLLAMM and IRT models have 
been predominantly used for cases with no nominal variables, though similar approaches 
can be used to generate dependence between a nominal variable and other kinds of 
variables too (see, for example, Bhat and Guo, 2007 and Pinjari et al., 2008).  

A fifth approach, originating from the social sciences, implicitly generates dependence 
among mixed outcomes by writing the latent and observed continuous variables as a 
function of unobserved psychological constructs. These relationships are characterized as 
measurement equations, in that the psychological constructs are manifested in the larger 
combination of mixed outcomes. The constructs themselves are related to exogenous 
variables and may be correlated with one another in a structural relationship. In this 
approach, the unobserved psychological constructs serve as latent factors that provide a 
structure to the dependence among the many mixed indicator variables. Seen from this 
perspective, the approach can also be viewed as a parsimonious attempt to explain the 
covariance relationship among a large set of mixed outcomes through a much smaller 
number of unobservable latent factors. Sometimes referred to as factor analysis, the 
approach represents a powerful dimension-reduction technique to analyze high-
dimensional heterogeneous outcome data by representing the covariance relationship 
among the data through a smaller number of unobservable latent factors. An entire field 
of structural equations modeling (SEM) has been developed around this psychological 
construct-based dependence modeling, originating in some of the early works of Jöreskog 
(1977). However, the SEM field has focused almost exclusively on non-nominal outcome 
analysis (see Gates et al., 2011 and Hoshino and Bentler, 2013). Indeed, traditional SEM 
software (such as LISREL, MPLUS, and EQS) is either not capable of handling nominal 
indicators or at least are not readily suited to handle nominal indicators (see Temme et 
al., 2008). But when this approach is extended to include a nominal indicator, it 
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essentially takes the form of an integrated choice and latent variable (ICLV) model (Ben-
Akiva et al., 2002, and Bolduc et al., 2005). Also, while traditional SEM techniques 
typically adopt normally distributed latent factors along with normally distributed 
measurement error terms (leading to probit models in the presence of binary/ordered 
outcomes), ICLV models tend to use normally distributed latent factors mixed with 
logistically distributed errors in the measurement equations for ordinal variables and 
type-1 extreme value errors in the nominal outcome utility functions (leading to a 
probability expression that involves a multivariate integral over the product of logit-type 
probabilities for the outcomes). In both the SEM and ICLV cases, the standard estimation 
methodology is the method of maximum likelihood estimation. When there are many 
binary/ordered-response outcomes (indicators) and/or a nominal variable, the integrals in 
the overall probability expression are computed using simulation techniques. As 
indicated by Hoshino and Bentler (2013), this can “be difficult to impossible when the 
model is complex or the number of variables is large.” This is particularly the case with 
the traditional mixture formulation of ICLV models in general, and particularly when 
there are several latent factors (see Daziano and Bolduc, 2013).  

Recently, Bhat and Dubey (2014) proposed a different way of formulating ICLV models, 
in which they use a SEM-like probit approach while also accommodating a single 
nominal variable. Essentially, this approach combines the power and parsimony of the 
dimension-reduction factor analysis structure of SEMs (as just discussed above) with the 
extended CGCM approach that uses a symmetric, latent continuous variable 
representation for all non-continuous outcomes (as in Paleti et al., 2013 and Bhat et al., 
2014a). In this paper, we generalize Bhat and Dubey’s approach to the case of multiple 
nominal outcomes, multiple ordinal variables, multiple count variables, and multiple 
continuous variables. The resulting model, which we label simply as the generalized 
heterogeneous data model (GHDM), is general enough to accommodate other models in 
the literature as special cases. Straightforward extensions of the model are available to 
accommodate longitudinal and spatial clustering, though we focus on the non-clustered 
mixed outcome model in the current paper. We propose the estimation of the GHDM 
using Bhat’s maximum approximate composite marginal likelihood (MACML) inference 
approach. In particular, in our approach, the dimensionality of integration in the 
composite marginal likelihood (CML) function that needs to be maximized to obtain a 
consistent estimator (under standard regularity conditions) for the GHDM parameters is 
independent of the number of latent factors and easily accommodates general covariance 
structures for the structural equation and for the utilities of the discrete alternatives for 
each nominal outcome. Further, the use of the analytic approximation in the MACML 
approach to evaluate the multivariate cumulative normal distribution (MVNCD) function 
in the CML function simplifies the estimation procedure even further so that the proposed 
MACML procedure requires the maximization of a function that has no more than 
bivariate normal cumulative distribution functions to be evaluated. 
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Chapter 2.  The GHDM Formulation  

There are two components to the model: (1) the latent variable SEM, and (2) the latent 
variable measurement equation model. These components are discussed in turn below. In 
the following presentation, for ease in notation, we will consider a cross-sectional model. 
As appropriate and convenient, we will suppress the index q for decision-makers 
(q=1,2,…,Q) in parts of the presentation, and assume that all error terms are independent 
and identically distributed across decision-makers. Table 1 summarizes all matrix 
notations and corresponding matrix dimensions used below in the GHDM formulation. 

 
Table 1: Matrix Notation, Description, and Dimension 

Symbol Represents… 

L  Number of latent variables 

D
~

 
Total number of exogenous variables in the structural equation 
system 

H  
Number of continuous outcomes in the measurement equation 
system 

N  
Number of ordinal outcomes in the measurement equation 
system 

C  
Number of count outcomes in the measurement equation 
system 

A  
Total number of exogenous and endogenous variables in the 
measurement equation system 

G


 
Total number of alternatives across all nominal variables in the 
choice model component of the measurement equation system 

Equation Notation Represents… Dimension 

Structural Equation 
(Equation 12 in 
text)       

*z  Vector of latent variables 1×L  

α  
Matrix of exogenous variable 

loadings on *z  DL
~×  

w  
Vector of exogenous variables 

affecting *z  1
~ ×D  

η  Vector of errors in structural 
equation 

1×L  
 

Γ  
Correlation matrix of error vector 
η  in latent variable structural 
equation 

LL ×  
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Equation Notation Represents… Dimension 

Measurement 
Equation 
(Equation 13 in text; 
γ  originates from 
Equation 7)       

y  
Vector of observed latent 
measurement equation dependent 
variables 

1)( ×++ CNH  

γ  
Matrix of coefficients representing 
the effect of exogenous and 
possible endogenous variables 

ACNH ×++ )(  

d


 

Matrix of coefficients representing 
the effect of latent variables on 
measurement equation dependent 
variables 

LCNH ×++ )(  

Measurement 
Equation 

ε  
Vector of errors in measurement 
equation 

1)( ×++ CNH  

Σ


 
Covariance matrix of  ε  (assumed 
diagonal for identification) 

)()( CNHCNH ++×++
 

γ  

Matrix of coefficients representing 
the effect of exogenous and 
possible endogenous variables on 
the count outcome 

AC ×  

Choice Model 
(Equation 14 in text; 
see text above 
Equation 10 for β  

and ϑ )  

U  Vector of alternative utilities 1×G


 

b  
Matrix of exogenous and possible 
endogenous variable effects on U  AG ×


 

x  Vector of exogenous variables in 
choice model 1×A  

β  

Matrix of coefficients capturing 
effects of latent variables and their 
interactions with exogenous 
variables 

LN
g

g
g

I

i
gi ×





=1

  

(Please see text for 
construction) 

ϑ  
Matrix of variables interacting with 
latent variables 





× 

=

g

g
g

I

i
giNG

1


 

(Please see text for 
construction) 

ς  Utility error vector 1×G


 

Λ  Covariance matrix of ς  GG


×  
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 2.1 Latent Variable SEM 

Let l be an index for latent variables (l=1,2,…,L). Consider the latent variable *
lz  and 

write it as a linear function of covariates: 

,*
llz η+′= wαl   (1) 

where w is a )1
~

( ×D  vector of observed covariates (excluding a constant), lα  is a 

corresponding )1
~

( ×D  vector of coefficients, and lη  is a random error term assumed to 

be standard normally distributed for identification purposes (see Stapleton, 1978).1 Next, 
define the )

~
( DL× matrix ),...,,( 21 ′= Lαααα , and the )1( ×L vectors ) ,...,,( **

2
*
1 ′= Lzzz*z  

and )'.,,,,( 321 Lηηηη =η  Unlike much of the earlier research in ICLV modeling, we 

allow an MVN correlation structure for η  to accommodate interactions among the 
unobserved latent variables: ],[~ Γ0η LLMVN , where L0  is an )1( ×L  column vector of 
zeros, and Γ  is )( LL × correlation matrix. In matrix form, we may write Equation (1) as: 

η+= αwz* . (2) 

It is not uncommon in the SEM literature to have latent variables affecting each other in 
the SEM. However, it may also not be easy to justify a priori inter-relationships between 
unobserved variables, and so we prefer a general covariance structure for the latent 
variables as in Equation (2). However, in some cases, it may indeed be appropriate to 
allow inter-relationships between the latent variables. Section 3.1 discusses the 
identification considerations in this case. Note also that our model formulation and 
estimation technique are readily applicable to this case of inter-related latent constructs 
too as long as the identification considerations in Section 3.1 are met. 

 2.2 Latent Variable Measurement Equation Model Components 

We will consider a combination of continuous, ordinal, count, and nominal outcomes 
(indicators) of the underlying latent variable vector *z . However, these outcomes may be 
a function of a set of exogenous variables too.  

Let there be H continuous outcomes ) ..., , ,( 21 Hyyy  with an associated index h 
) ..., ,2 ,1( Hh = . Let hhhy ε+′+′= *

h zdxγ  in the usual linear regression fashion, where x  

is an )1( ×A  vector of exogenous variables (including a constant) as well as possibly the 
observed values of other endogenous continuous variables, other endogenous ordinal 
variables, other endogenous count variables, and other endogenous nominal variables 

(introduced as dummy variables). hγ  is a corresponding compatible coefficient vector.2 

                                                 
1 The reason for excluding the constant in the covariate vector w will become clear in Section 3. 
2 In joint limited-dependent variable systems in which one or more dependent variables are not observed on a 
continuous scale, such as the joint system considered in the current paper that has discrete dependent and count 
variables (which we will more generally refer to as limited-dependent variables), the structural effects of one 
limited-dependent variable on another can only be in a single direction. That is, it is not possible to have correlated 
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hd  is an )1( ×L vector of latent variable loadings on the hth continuous outcome, and hε  
is a normally distributed measurement error term. Stack the H continuous outcomes into 

an )1( ×H vector y, and the H error terms into another )1( ×H  vector ) ..., , ,( 21 ′= Hεεεε . 
Also, let Σ  be the covariance matrix of ε , which is restricted to be diagonal. This helps 

identification because there is already an unobserved latent variable vector 
*z  that serves 

as a vehicle to generate covariance between the outcome variables (as we discuss in the 

next section). Define the )( AH ×  matrix ),...,( 21 ′= Hγγγγ  and the )( LH ×  matrix of 

latent variable loadings ( ) .,...,, ′= Hdddd 21 Then, one may write, in matrix form, the 
following measurement equation for the continuous outcomes: 

εdzγxy * ++= .  (3) 
Next, consider N ordinal outcomes (indicator variables) for the individual, and let n be 
the index for the ordinal outcomes ) ..., ,2 ,1( Nn = . Also, let nJ  be the number of 

categories for the nth ordinal outcome )2( ≥nJ  and let the corresponding index be nj

) ..., ,2 ,1( nn Jj = . Let *~
ny  be the latent underlying variable whose horizontal partitioning 

leads to the observed outcome for the nth ordinal variable. Assume that the individual 
under consideration chooses the th

na  ordinal category. Then, in the usual ordered 

response formulation, for the individual, we may write: 

,~~~and,~~~~
,

*
1,

*

nn annannnn yy ψψε <<+′+′= −
*

n zdxγ  (4) 

where x  is a vector of exogenous and possibly endogenous variables as defined earlier, 

nγ~  is a corresponding vector of coefficients to be estimated, nd~  is an )1( ×L vector of 

latent variable loadings on the nth continuous outcome, the ψ~  terms represent thresholds, 

and nε~  is the standard normal random error for the nth ordinal outcome. For each ordinal 

outcome, 
nn JnJnnnn ,1,2,1,0,

~~...~~~ ψψψψψ <<<< − ; −∞=0,
~

nψ , 0~
1, =nψ , and +∞=

nJn,
~ψ . For 

later use, let )~...,~,~(~
1,3,2, ′= −nJnnn ψψψnψ  and .)~,...,~,~(~ ′′′= Nψψψψ 21  Stack the N underlying 

continuous variables *~
ny  into an )1( ×N vector *y~ , and the N error terms nε~  into another 

)1( ×N vector ε~ . Define )~,...,~,~(~
21 ′= Hγγγγ  [ )( AN ×  matrix] and ( )N, dddd ~

,...,
~

,
~~

21=  [

)( LN ×  matrix], and let NIDEN  be the identity matrix of dimension N representing the 

correlation matrix of ε~  (so, ( )NIDEN0 ,~~
NNMVNε ; again, this is for identification 

purposes, given the presence of the unobserved *z  vector to generate covariance. Finally, 
stack the lower thresholds for the decision-maker ( )Nn

nan  ..., ,2 ,1~
1, =−ψ

 
into an )1( ×N  

                                                                                                                                                             
unobserved effects underlying the propensities determining two limited-dependent variables, as well as have the 
observed limited-dependent variables themselves structurally affect each other in a bi-directional fashion. This 
creates a logical inconsistency problem (see Maddala, 1983, page 119 for a good discussion). It is critical to note 
that, regardless of which directionality of structural effects among the endogenous variables is specified (or even if 
no relationships are specified), the system is a joint bundled system because of the correlation in unobserved factors 
impacting the underlying propensities.  
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vector lowψ~  and the upper thresholds ( )Nn
nan  ..., ,2 ,1~

, =ψ  into another vector .~
upψ  Then, 

in matrix form, the measurement equation for the ordinal outcomes (indicators) for the 
decision-maker may be written as: 

up
*

low
** ψyψεzdxγy ~~~ ,~~~~ <<++= .  (5) 

Let there be C count variables for a household, and let c be the index for the count 
variables ) ..., ,2 ,1( Cc = . Let the count index be ck )..., ,2 ,1 ,0( ∞=ck  and let cr be the 

actual observed count value for the household. Then, following the recasting of a count 
model in a generalized ordered-response probit formulation (see Castro, Paleti, and Bhat, 
or CPB, 2012 and Bhat et al., 2014b), a generalized version of the negative binomial 
count model may be written as:  

,, ,
*

1,
*

cc rccrccc yy ψψε  <<+′= −
*

c zd  (6) 

( ) ( )
c

cl

c rc

r

t

t
c

c

c

c
rc t

tΓ

Γ ,
0

1
, !

)(

)(

1 ϕυθ
θ
υψ

θ

+














 +−Φ= 
=

− , 
cc

c
c θλ

λυ
+

= , and xγc′=


ecλ . (7) 

In the above equation, *
cy


 is a latent continuous stochastic propensity variable associated 

with the count variable c that maps into the observed count cr  
through the cψ


vector 

(which is a vertically stacked column vector of thresholds .),... ,,,( 2,1,0,1, ′− cccc ψψψψ 
 cd


 is 

an )1( ×L vector of latent variable loadings on the cth count outcome, and cε  is a standard 

normal random error term. cγ


 is a column vector corresponding to the vector x . 1−Φ  in 

the threshold function of Equation (7) is the inverse function of the univariate cumulative 
standard normal. cθ  is a parameter that provides flexibility to the count formulation, and 

is related to the dispersion parameter in a traditional negative binomial model 

)0( cc ∀>θ . )( cΓ θ  is the traditional gamma function; 
∞

=

−−=
0~

~1 ~~)(
t

t
c tdetΓ cθθ . The 

threshold terms in the cψ


vector satisfy the ordering condition (i.e., 

)....2,1,0,1, ccccc ∀∞<<<<− ψψψψ 
 as long as .....2,1,0,1, ∞<<<<− cccc ϕϕϕϕ  The 

presence of the cϕ
 

terms in the thresholds provides substantial flexibility to 

accommodate high or low probability masses for specific count outcomes without the 
need for cumbersome traditional treatments using zero-inflated or related mechanisms in 
multi-dimensional model systems (see Castro et al., 2011 for a detailed discussion). For 
identification, we set −∞=−1,cϕ  and 00, =cϕ for all count variables c. In addition, we 

identify a count value *
ce  ......}),2 ,1 ,0{( * ∈ce  above which ......}),2 ,1{(, ∈ckc k

c
ϕ is held 

fixed at *, cec
ϕ ; that is, *,,

cc eckc ϕϕ =  if ,*
cc ek >  where the value of *

ce  can be based on 

empirical testing. Doing so is the key to allowing the count model to predict beyond the 
range available in the estimation sample. For later use, let ),,( *,2,1, ′=

cecccc ϕϕϕ ϕ 1( * ×ce  

vector) (assuming , )0* >ce  







×






′′′′=  vector1  ),,,( *
21

c
cC eϕϕϕϕ  , and 
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[ ]vector1 C ),,( 21 ×′= Cθθθ θ . Also, stack the C latent variables *
cy


 into a )1( ×C

vector
 

*y , and the C error terms cε  into another )1( ×C vector
 
ε . Let 

( )CIDEN0 ,~ CCMVNε  from identification considerations, and stack the lower 

thresholds of the individual ( )Cc
crc  ..., ,2 ,11, =−ψ

 
into a )1( ×C  vector lowψ , and the upper 

thresholds ( )Cc
crc  ..., ,2 ,1, =ψ  into another )1( ×C vector upψ . Define ),...,,( 21 ′= Cγγγγ 

)[( AC ×  matrix] and ( )′= Cdddd


,...,, 21 )[( LC ×  matrix]. With these definitions, the 

latent propensity underlying the count outcomes may be written in matrix form as:  

up
*

low
** ψyψ εzdy  <<+= , .  (8) 

Note also that the interpretation of the generalized ordered-response recasting is that 
consumers have a latent “long-term” propensity *

cy


 associated with the demand for each 

product/service represented by the count c, which is a linear function of the latent 
variable vector *z  (see CPB for a discussion of the interpretation of the generalized 
ordered-response recasting of count models). Such a specification enables covariance 
across the count outcomes (through the propensity variables *

cy


) and between the count 

outcomes and other mixed outcomes. On the other hand, there may be some specific 
consumer contexts and characteristics (embedded in x ) that may dictate how the long-
term propensity is manifested in a count demand at any given instant of time. Our implicit 
assumption is that the latent variable vector *z  affects the “long-term” latent demand 
propensity *

cy


, but does not play a role in the instantaneous translation of propensity to 

actual manifested count demand. This allows us to easily incorporate count outcomes 
within a mixed outcome model, and estimate the resulting model using Bhat (2011) 
MACML approach. Similarly, an implicit assumption in Equation (8) is that the 
factors/constraints that are responsible for the instantaneous translation of propensity to 
manifested count demand (that is, the elements of the x  vector) do not affect the “long-
term” demand propensity, though this is being imposed purely for parsimony purposes. 
Relaxing this assumption does not complicate the model system or the estimation process 
in any way. 

Finally, let there be G nominal (unordered-response) variables for an individual, and let g 
be the index for the nominal variables ),...,3 ,2 ,1( Gg = . Also, let Ig be the number of 

alternatives corresponding to the gth nominal variable (Ig ≥ 3) and let gi be the 

corresponding index ) ,...,3 ,2 ,1( gg Ii = . Consider the gth nominal variable and assume 

that the individual under consideration chooses the alternative gm . Also, assume the 

usual random utility structure for each alternative gi . 

,)(
ggggg gigigigigiU ς+′+′= *zβxb ϑ   (9) 

where x  is as defined earlier, 
ggib  is an )1( ×A  column vector of corresponding 

coefficients, and 
ggiς is a normal error term. 

ggiβ  is an )( LN
ggi × -matrix of variables 

interacting with latent variables to influence the utility of alternative gi , and 
ggiϑ  is an 
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)1( ×
ggiN -column vector of coefficients capturing the effects of latent variables and their 

interaction effects with other exogenous variables. If each of the latent variables impacts 
the utility of the alternatives for each nominal variable purely through a constant shift in 
the utility function, 

ggiβ will be an identity matrix of size L, and each element of 
ggiϑ  will 

capture the effect of a latent variable on the constant specific to alternative gi  of nominal 

variable g. Let ),...,( 21 ′=
ggIgg ςςςgς  1( ×gI  vector), and ),(~ gΛ0

gIMVNgς . Taking the 

difference with respect to the first alternative, the only estimable elements are found in 
the covariance matrix gΛ


 of the error differences, ),...,,( 32 ggIgg ςςς  =gς  (where 

)1,1 ≠−= iggigi ςςς .3 Further, the variance term at the top left diagonal of gΛ


 

),...,2 ,1( Gg =  is set to 1 to account for scale invariance. gΛ  is constructed from gΛ


 by 

adding a row on top and a column to the left. All elements of this additional row and 
column are filled with values of zero. In addition, the usual identification restriction is 
imposed such that one of the alternatives serves as the base when introducing alternative-
specific constants and variables that do not vary across alternatives (that is, whenever an 
element of x  is individual-specific and not alternative-specific, the corresponding 
element in 

ggib is set to zero for at least one alternative ).gi  To proceed, define 

),...,,( 21 ′=
ggIggg UUUU  1( ×gI  vector), ),...,,,( 321 ′=

gIg gggg bbbbb  AI g ×(  matrix), and 

),...,, 21 ′′′′(=
ggIggg ββββ  










×

=

LN
g

g

g

I

i
gi

1

 matrix. Also, define the 









×

=

g

g

g

I

i
gig NI

1

matrix gϑ , 

which is initially filled with all zero values. Then, position the )1( 1gN×  row vector 1gϑ′  

in the first row to occupy columns 1 to 1gN  , position the )1( 2gN×  row vector 2gϑ′  in the 

second row to occupy columns 1gN +1 to ,21 gg NN +  and so on until the )1(
ggIN×  row 

vector 
ggIϑ′  is appropriately positioned. Further, define )( ggg βϑϖ = LI g ×(  matrix), 


=

=
G

g
gIG

1


, 

=

−=
G

g
gIG

1

),1(
~ ( )′′′′= GUUUU , ... ,, 21  1( ×G


 vector), ),...,( 21 ′= Gςςςς 1( ×G



vector), ),...,,( 21 ′′′′= Gbbbb AG ×


( matrix), ),...,,( 21 ′′′′= Gϖϖϖϖ LG ×


( matrix), and 

),...,,(Vech 21 Gϑϑϑϑ =  (that is, ϑ  is a column vector that includes all elements of the 

matrices Gϑϑϑ ,...,, 21 ). Then, in matrix form, we may write Equation (9) as: 

,ςϖ ++= *zbxU   (10) 

where ),(~ Λ0
GG

MVN ς . As earlier, to ensure identification, we specify Λ  as follows: 

                                                 
3 Also, in multinomial probit models, identification is tenuous when only individual-specific covariates are used in 
the vector x (see Keane, 1992 and Munkin and Trivedi, 2008). In particular, exclusion restrictions are needed in the 
form of at least one individual characteristic being excluded from each alternative’s utility in addition to being 
excluded from a base alternative (but appearing in some other utilities). But these exclusion restrictions are not 
needed when there are alternative-specific variables.  
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).matrix(3

2

1

GG

G













×























=

Λ0000

00Λ00

000Λ0

0000Λ

Λ   (11) 

In the general case, this allows the estimation of 
=









−

−G

g

gg II

1

1
2

)1(*
 terms across all the 

G nominal variables, as originating from 







−

−
1

2

)1(* gg II
 terms embedded in each gΛ



matrix; (g=1,2,…,G). 
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Chapter 3.  The Model System Identification and Estimation 

Let )( CNHE ++= . Define [ ] [ ] ],vector1[,~, ** ×
′






 ′′′= Eyyyy 

) ,~,( ′′′= ACγγγ 0


[E × A 

matrix], matrix],[),
~

,( LE ×′′′′= dddd


 and ),~,( ′′′′= εεεε 
 vector),1( ×E  where AC0  is a 

matrix of zeros of dimension . CA× Let δ  be the collection of parameters to be 
estimated:

, ])Vech(, ),Vech( ,  ,  ),Vech(),Vech(),Vech(),Vech(),Vech([ ΛΣδ ϑbθφγdγα 
= where 

the operator )"(Vech" .  vectorizes all the non-zero elements of the matrix/vector on which 

it operates. We will assume that the error vectors τ , ε , ξ , and ς  are independent of 
each other. While this assumption is not strictly necessary (and can be relaxed in a very 
straightforward manner within the estimation framework of our model system as long as 
the resulting model is identified), the assumption aids in developing general sufficiency 
conditions for identification of parameters in a mixed model when the latent variable 
vector *z  already provides a mechanism to generate covariance among the mixed 
outcomes.  

With the matrix definitions above, the continuous components of the model system may 
be written compactly as: 

η+= αwz* ,  (12) 

εzdxγy * 
++= , )matrix()(Var with EE ×
















==

C

N

IDEN00

0IDEN0

00Σ

Σ
ε  ,  (13) 

ςzbxU * ++= ϖ .    (14) 

To develop the reduced form equations, replace the right side of Equation (12) for *z in 
Equations (13) and (14) to obtain the following system: 

εηdαwdxγεηαwdxγεzdxγy * 
+++=+++=++= )( ,   (15)  

ςηαwbxςηαwbxςzbxU * +++=+++=++= ϖϖϖϖ )( .  

Now, consider the )]1)[( ×+ GE


 vector [ ]′′′= UyyU ,


. Define 










+
+=








=

αwbx
αwdxγ

B
B

B
2

1

ϖ



 and 








+′′
′+′

=






 ′
=

ΛΓΓ

ΓΣΓ

ΩΩ

ΩΩ
Ω

212

121

ϖϖϖ
ϖ

d
ddd





.   (16) 

Then ).,( ΩBMVN ~yU GE


+   

 3.1 Model Identification 

The question of identification relates to whether all the elements of δ are estimable from 
the elements of B  and Ω  (that is, from ).,,,, 122121 ΩΩΩ BB  A simple approach would 
be to develop easy-to-apply sufficiency conditions for identification (even if they may 
lead to over-identification and may be more restrictive than needed). A starting point for 
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this is O’Brien (1994) and Reilly and O’Brien (1996), who develop sufficiency 
conditions for multiple-indicator multiple-cause (MIMIC) models, and whose discussion 
is applicable to SEM-based models with no nominal variables. Conforming with the 
setup of earlier MIMIC models, we will assume in our mixed model that the number of 
measurement equations with non-nominal variables exceeds the number of latent factors 
(this will typically be the case, and indeed forms the backbone of modeling a high-
dimensional mixed data model through a lower dimensional factor analytic structure). 
That is, we will assume that .LE > We will also assume the presence of more than one 
latent variable, as is quite common in MIMIC models (L>1). However, in constrast to 
earlier MIMIC studies, we allow nominal dependent variables, allow the variable vector 
x  to appear in the measurement equations, and allow the observed endogenous variables 
to be inter-related. In this situation, we can develop sufficiency conditions in five steps as 
follows.  

(1) First, if the exogenous covariates do not appear in the measurement equations, one can use 
O’Brien’s (1994) exposition for MIMIC models with no nominal variables (that is, for the sub-
model given by Equations (12) and (13) with 0=γ ) to show that the elements of this sub-

model (i.e., α , Γ , d


, and Σ


) are all identifiable as long as: 

(a) Γ  in the structural equation is specified to be a correlation matrix, with each latent 
variable correlated with at least one other latent variable,  

(b) diagonality is maintained across the elements of the error term vector ε  (that is, Σ


 is 
diagonal),  

(c) for each latent variable, there are at least two non-nominal outcome variables that load 
only on that latent variable and no other latent variable (that is, there are at least two factor 
complexity one outcome variables for each latent variable) (see Reilly and O’Brien, 1996).  

The first two of these conditions have already been imposed in the development of our mixed 
model formulation (the specification that the covariance matrices of ε~  and ε  are identity 
matrices is a result of imposing diagonality combined with a scaling restriction for ordinal and 
count outcomes). Intuitively speaking, the reason for the first condition is that only the entire 
diagonal terms of the covariance matrix elements of the non-nominal outcomes in the reduced 

form Equation (16) are identified: that is, only the diagonal terms of ΣΓ


+′dd  as a whole are 

identified. Thus, as long as there are diagonal variance terms to be estimated in Σ


 (subject to 
identification considerations as discussed in the previous section), it immediately implies that 
diagonal terms in Γ  cannot be identified solely from the estimated diagonal entries of 

ΣΓ


+′dd  (and so the diagonal terms of Γ  are normalized to one, leading to the correlation 
matrix for Γ ). The second sufficiency condition is related to the off-diagonal terms in 

ΣΓ


+′dd . If we allow Σ


 to have a full set of off-diagonal elements, it immediately implies 
that the off-diagonal elements of Γ  are not identified. That is, one can ignore the correlations 

(the off-diagonals) in Γ  (set these to zero), and estimate all the off-diagonal elements of Σ


. 
The problem with this though is that it leads to an explosion in the number of covariance 
parameters to be estimated. Thus, if there are a total of six ordinal/count/ continuous dependent 

variables, the number of off-diagonal parameters in a fully specified Σ


 matrix is 15. With 10 
ordinal/count/continuous dependent variables, the number of off-diagonal parameters in a fully 

specified Σ


 matrix is 45. On the other hand, the value of the latent factor approach arises 
through the effective dimensionality reduction that accrues from having all off-diagonal 
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elements in a full covariance matrix for Γ , but no off-diagonal elements in Σ


. Doing so 
essentially places a factor-analytic structure for the covariances among the 
ordinal/count/continuous dependent variables, with this structure being represented by the off-

diagonal elements of dd ′


Γ . Thus, if there are three latent variables that underlie the 10 
ordinal/count/continuous variables, there are effectively only three off-diagonal elements in Γ  
to be estimated to characterize the 45 off-diagonal entries for the covariance elements among 
the ordinal/count/continuous dependent variables. Of course, one can keep all the off-diagonal 

elements of Γ  and introduce additional off-diagonal elements very selectively in Σ


 to still 
achieve theoretical identification, but this can become ad hoc and will require examination for 

each specific case to ensure identification. Overall, keeping Σ


 diagonal and allowing Γ  to 
have all off-diagonal elements ensures identification, while also being the vehicle to reduce 
high-dimensional problems through a factor-analytic structure. This increases econometric 
efficiency, and allows the estimation of high-dimensional models with the order of sample sizes 
typically available for model estimation. Note, however, that our estimation procedure itself is 
agnostic to the number of parameters to be estimated in terms of computational ability. The 
third condition can be imposed through the empirical specification based on 
theoretical/intuitive considerations. This condition, referred to as the two indicator rule (see, 

Bollen, 1989, page 244), essentially allows identification of the matrices ,  , αd


 and covariance 
matrix Γ  of the structural matrix errors.  

(2) Next, we consider the result from the first step, but now relax the constraint that 0=γ , and 
allow some exogenous variables to influence the non-nominal variables. In this situation, there 
is an identification problem in Equation (13) if the same exogenous variable is allowed to have 
a direct impact through the x  vector as well as an indirect impact through a latent variable. 
That is, in general, it is not possible to disentangle the separate effects of the same variable 

through the direct γ  effect and through the indirect d


 effect. A sufficient identification 
condition is then to ensure that the element corresponding to the effect of each exogenous 
variable is zero in either the γ  vector or the α  vector (this is also the reason that we include a 

constant in the x  vector, but not in the w  vector). In other words, a sufficient condition for 
identification of the parameters in the structural equation and the measurement equations for 

non-nominal outcomes (that is, α , Γ , γ , d


, and Σ


) is:  

(a) the three conditions from the first step hold, plus  

(b) the condition holds that each element of y  in Equation (13) is either  

(i) directly related to an exogenous variable without being a function of any latent 
variable that itself has the exogenous variable as a covariate in the structural equation, 
or  

(ii) loaded onto latent variables, but then not directly related to any exogenous variable 
that itself impacts any of the latent variables on which the outcome variable loads.  

That is, an exogenous variable, as a sufficiency condition for identification, should not impact 
an element of y both directly and indirectly.  

(3) Third, we proceed to the choice model components. Following Bhat and Dubey (2014), we 

ignore the information available from the covariance matrix d ′=


ΓΩ12 ϖ . While one can 
effectively use this covariance matrix to identify parameters in specific situations, we develop a 
simpler (albeit more restrictive than needed) and general sufficiency condition for identification 
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of the measurement equation parameters corresponding to the nominal outcomes based only on 

the mean element of the utilities αwbxB ϖ+=2  (but we retain a general covariance matrix 

gΛ  across alternative utilities for each nominal outcome g). Specifically, all the parameters in 

the nominal measurement equation part in Equation (14) (that is, elements of b, the elements of 

gϑ  (g=1,2,…,G) embedded in ϖ , and Λ ) are estimable if all latent variables appear only as 

interactions and not as direct shifters of utility. In this case, there are effectively no common 
exogenous variables in the x  effect and the w  effect, and so identification of the elements of 

gb  and gϑ  is immediate for each nominal variable g through estimation of the mean 2B . But 

identification becomes more challenging in the case when the latent variables appear by 
themselves in the choice models (with or without additional interaction effects of the latent 
variables). In this case, if an element of 

ggib  corresponding to a specific variable in the vector 

x  is non-zero, a sufficient condition for identification is that the utility of alternative gi  not 

depend on any latent variable that contains that specific variable as a covariate in the structural 
equation system. This is the most common way that identification has been achieved in most 
earlier ICLV studies. In fact, most ICLV studies do not even seem to discuss this identification 
issue. Alternatively, one may include common elements (including alternative-specific 
attributes in the utilities of the alternatives of nominal variables and those same variables in the 
structural model for latent variables that impact the utilities), but appropriate restrictions have 
to be imposed (for example, a latent variable may affect the utility of one of three alternatives 
for a nominal variable, and a covariate affecting that latent variable may also impact the utility 
of the same alternative but the coefficient on the covariate may be constrained to be the same as 
a covariate appearing in the utility of one of the other two alternatives). However, given the 
sheer number of such specific situations, we leave an in-depth study of identification issues in 
the context of the overlapping explanatory variables in the structural equation and in the 
utilities of nominal variables for a later date.  

(4) Fourth, as indicated in footnote 2, endogenous variable effects can be specified only in a single 
direction. In addition, when a continuous observed endogenous variable (say variable A) 
appears as a right side variable in the regression for another continous observed endogenous 
variable, or as a right side variable in the latent regression underlying another count or ordinal 
endogenous variable, each latent variable appearing in the regression/latent regression for the 
other endogenous continous/count/ordinal variable (say variable B) should have two factor 
complexity one outcome variables after excluding the equation for variable B. Essentially, this 
sufficiency condition ensures that part c of the first step continues to hold. This latter condition 
is not needed when a non-continuous observed endogenous variable appears as a right side 
variable in the regression of any other observed endogenous variable because of the non-linear 
nature of the relationship between the latent regressions and the observed non-continuous 
endogenous variables.  

(5) Finally, moving to the structural equation system, in this paper we use a reduced form system 
as shown in Equation (2). In this case, only the above four sufficiency conditions are needed for 
identification. However, as discussed under Equation (2), there may be instances when the 
analyst wants to allow direct inter-relationships between the latent constructs or variables. In 
this situation, identification is still possible if a recursive relationship is used so that some latent 
variables appear as right side variables in the equations for other latent variables in a recursive 
fashion. But one of two conditions for identification should hold even in this recursive case. 
The first is that the error terms of the latent variables in the structural form are uncorrelated 
(though, in reduced form each latent variable should be correlated with at least another latent 
variable; that is, one must ensure that each latent variable, excepting the first one in the 
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recursive structure, is directly related to at least one other upstream latent variable in this 
uncorrelated case for the sufficiency conditions discussed in the first four steps above to hold). 
Alternatively, a second condition that also allows identification is that there should be at least 
one exogenous variable in each upstream latent variable equation that does not appear in each 
downstream latent variable equation that has the upstream latent variable as an explanatory 
variable (please see the online supplement to this paper at 
http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/GHDM/Online_supp_GHDM.pdf for a 
discussion of these indentification conditions).  

 3.2 Model Estimation 

To estimate the model, note that, under the utility maximization paradigm, 
gg gmgi UU − must be 

less than zero for all gg mi ≠  corresponding to the gth nominal variable, since the individual 

chose alternative gm . Let )( gggmgimgi miUUu
gggg

≠−= , and stack the latent utility 

differentials into a vector ( ) 



 ≠′= ggmgImgmg miuuu

gggg
;,...,, 21gu . Also, define 

[ ] [ ] [ ]
′






 ′′′= Guuuu ,...,, 21 . We now need to develop the distribution of the vector 

( )′′′= uyyu ,


from that of [ ]′′′= UyyU ,


. To do so, define a matrix M of size 

[ ] [ ]GEGE


+×+ ~
. Fill this matrix with values of zero. Then, insert an identity matrix of size E 

into the first E rows and E columns of the matrix M. Next, consider the rows from 
1to1 1 −++ IEE , and columns from .to1 1IEE ++  These rows and columns correspond 

to the first nominal variable. Insert an identity matrix of size )1( 1 −I  after supplementing with a 

column of ‘-1’ values in the column corresponding to the chosen alternative. Next, rows 1IE +  

through 221 −++ IIE  and columns 11 ++ IE  through 21 IIE ++ correspond to the second 

nominal variable. Again position an identity matrix of size )1( 2 −I  after supplementing with a 
column of ‘-1’ values in the column corresponding to the chosen alternative for the second 
nominal variable. Continue this procedure for all G nominal variables. With the matrix M as 

defined, we can write ),
~

,
~

(~ Ω BMVN ~yu GE +
 where BB M=~

 and MMΩΩ ′=~
. Next, 

partition the vector B~  into components that correspond to the mean of the vectors y  (for the 

continuous variables), [ ] [ ] ],vector1)[(,~ ** ×+
′






 ′′= CNyyy 

  (for the ordinal and count 

outcomes), and u  (for the nominal outcomes), and the matrix Ω
~

 into the corresponding 
variances and covariances: 

1)
~

(
~

~

~

~ ×+
















= GE

u

y

y

B
B
B

B  vector and )
~
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~

(
~~~

~~~
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~

    

      

      

GEGE
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uy

uy

+×+
















′′
′=

uyy

yyy

yyy

ΩΩΩ

ΩΩΩ

ΩΩΩ
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matrix.  (17) 
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Define ( )′′= uyu ' ,~  , so that .)~,( ′′′= uyyu  Re-partition B~  and Ω
~

 in a different way such 
that: 
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~

(~

~
~
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~
~

~

~
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B   vector, and     (18) 
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 The conditional distribution of u~ , given y, is MVN with mean 
( )yyuyuu ByBB ~~~~ 1

  ~~~ −′+= −ΩΩ


 
and variance   ~

1
  ~  ~  ~

~~~~
uyyuyuu ΩΩΩΩΩ −′−=


. Next, define 

threshold vectors as follows: 

( )
′




 ′−′′= ,,,~

~
G

∞lowlowlow ψψψ 
]1)

~
([( ×++ GCN vector) and ( )

′




 ′′′=

Gupup ~,,~ 0ψψψup


]1)
~

([( ×++ GCN

 

vector), where G~∞−  is a 1
~ ×G -column vector of negative infinities, 

and G
~0  is another 1

~ ×G -column vector of zeros. Then the likelihood function may be 

written as: 

[ ] ,~ Pr)
~

,
~

()(   uplowHfL ψuψB|y yy
 ≤≤×= Ωδ      (19) 

,),|()
~

,
~

|(   ~~~  drff
GCN

D

H

r

uuyy BrBy ΩΩ


++×=
  

 

where the integration domain }:{ uplowrD ψrψr 
≤≤=  is simply the multivariate region 

of the elements of the u~  vector determined by the observed ordinal indicator outcomes, 
and the range ),( ~~

G
0G∞−  for the utility differences is taken with respect to the utility of 

the observed choice alternative for the nominal outcome. )
~

,
~

|( yyBy ΩHf  is the MVN 

density function of dimension H  with a mean of yB~  and a covariance of yΩ
~

, and 

evaluated at y . The likelihood function for a sample of Q decision-makers is obtained as 
the product of the individual-level likelihood functions.  

The above likelihood function involves the evaluation of an GCN
~++ -dimensional 

rectangular integral for each decision-maker, which can be computationally expensive. 
Thus, the MACML approach of Bhat (2011) is used.  

 3.3 The Joint Mixed Model System and the MACML Estimation 
Approach 

Consider the following (pairwise) composite marginal likelihood (CML) function formed 
by taking the products (across the N ordinal variables, the C count variables, and G 
nominal variables) of the joint pairwise probability of the chosen alternatives for a 
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decision-maker, and computed using the analytic approximation of the multivariate 
normal cumulative distribution (MVNCD) function. 
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In the above CML approach, the MVNCD function appearing in the CML function is of 
dimension equal to (1) two for the second component (corresponding to each pair of 
observed ordinal outcomes), (2) two for the third component (corresponding to each pair 
of count outcomes), (3) two for the fourth component (corresponding to each pair of an 
ordinal outcome and a count outcome), (4) gI for the fifth component (corresponding to 

each pair of a nominal variable and an ordinal variable), (5) gI  for the sixth component 

(corresponding to a nominal variable and a count variable), and (6) 2−+ ′gg II  for the 

seventh component (corresponding to a pair of nominal outcomes g and ).g′  The net 
result is that the pairwise likelihood function now only needs the evaluation of a 
cumulative normal distribution function of dimension that is utmost equal to the sum of 
the alternatives associated with the pair of nominal variables with the two highest number 
of alternatives.  

To explicitly write out the CML function in terms of the standard and bivariate standard 
normal density and cumulative distribution function, define Δω  as the diagonal matrix of 

standard deviations of matrix Δ , using );(. *ΔRφ  for the multivariate standard normal 

density function of dimension R and correlation matrix *Δ  ( 11* −
Δ

−
Δ= ωΔωΔ ), and 

);(. *ΔEΦ  for the multivariate standard normal cumulative distribution function of 

dimension E and correlation matrix *Δ . Define a set of two selection matrices as follows: 
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( GCNI g ++× selection matrix with an entry of ‘1’ in the first row and 

the thv column, an identity matrix of size 1−gI  occupying the last 1−gI  rows and the 
th

g

j
jICN 








+−++ 

−

=

1)1(
1

1

through 

th
g

j
jICN 








−++ 

=1

)1( columns (with the convention 

that 0)1(
0

1

=−
=j

jI ), and entries of ‘0’ everywhere else, (2) gg ′R  is a 

)
~

()2( GCNII gg ++×−+ ′  selection matrix with an identity matrix of size ( 1−gI ) 

occupying the first ( 1−gI ) rows and the 

th
g

j
jICN 








+−++ 

−

=

1)1(
1

1

through 



 

20 

th
g

j
jICN 








−++ 

=1

)1( columns (with the convention that 0)1(
0

1

=−
=j

jI ), and another 

identity matrix of size )1( −′gI  occupying the last )1( −′gI  rows and the 
th

g

j
jICN 








+−++ 

−′

=

1)1(
1

1

through 

th
g

j
jICN 








−++ 

′

=1

)1( columns; all other elements of 

gg ′R take a value of zero. Also, let ,~ vguvgvg DD ′= ΩΩ


 ,~ ggugggg ′′′ ′= RR ΩΩ


[ ] [ ]
[ ]vv

vuv
upv

 ~

~

,

u

up Bψ

Ω



−

=μ ,
[ ] [ ]

[ ]vv

vuv
lowv

 ~

~

,

u

low Bψ

Ω



−

=μ ,
[ ]

[ ] [ ] vvvv

vv
vv

′′

′
′ =

 ~ ~

 ~

uu

u

ΩΩ

Ω




ρ , where [ ]
vupψ  

represents the thv  element of upψ  (and similarly for other vectors), and [ ] vv ′ ~uΩ


represents 

the thvv ′  element of the matrix  ~uΩ


. Then,  

[ ] [ ]( )

{ }[ ] { }[ ]
{ } , ;

;;

),,(),,(

),,(),,(

~
;

~
)(

1

1 1

*
  ~

1
2

1 1

*
  ~

1*
  ~

1

1

1 1 ,,2,,2

,,2,,2

*
  

1-
~

1H

1h

~

  

    

    













 −Φ

×







−Φ−−Φ

×






















Φ+Φ−

Φ−Φ

×−






=

∏∏

∏∏

∏ ∏

∏

−

= =′
′′

−
−+

+

= =

−−

−+

=

+

+=′ ′′′′

′′′′

−

=

′′

G

g

G

g
gguII

CN

v

G

g
vguvgIvguvgI

CN

v

CN

vv vvlowvlowvvvupvlowv

vvlowvupvvvupvupv

HCML

gggg

vggvgg

L

Ωω

ΩωΩω

Ωωωδ

Ω

ΩΩ

ΩΩ












BR

BψDBψD

By

gg

lowup

yyyy

ρμμρμμ
ρμμρμμ

φ
 

(21) 

where ( )
′




 ′′′= ,,,~

~
G

0lowlowlow ψψψ 
 . 

In Equation (21), the first component corresponds to the marginal likelihood of the 
continuous outcomes, the second component corresponds to the likelihood of pairs of 
outcomes across all ordinal and count outcomes (essentially this combines the second, 
third, and fourth components of Equation (20)), the third component corresponds to the 
pairwise likelihood for ordinal/count outcomes and nominal outcomes (this combines the 
fifth and sixth components of Equation (20)), and the last component corresponds to the 
pairwise likelihood for the nominal outcomes (this is also the last component of 
expression (20)). In the MACML approach, all MVNVD function evaluations greater 
than two dimensions are evaluated using an analytic approximation method rather than a 
simulation method. This combination of the CML with an analytic approximation for the 
MVNCD function is effective because the analytic approximation involves only 
univariate and bivariate cumulative normal distribution function evaluations. The 
MVNCD analytic approximation method used here is based on linearization with binary 
variables (see Bhat, 2011). As has been demonstrated by Bhat and Sidharthan (2011), the 
MACML method has the virtue of computational robustness in that the approximate 
CML surface is smoother and easier to maximize than are traditional simulation-based 
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likelihood surfaces. We can write the resulting equivalent of Equation (21) computed 
using the analytic approximation for the MVNCD function as )(, δqMACMLL , after 

introducing the index q for individuals. The MACML estimator is then obtained by 
maximizing the following function:  

log .)(log)(
1

,
=

=
Q

q
qMACMLMACML LL δδ   (22) 

The covariance matrix of the parameters δ  may be estimated by the inverse of 
Godambe’s (1960) sandwich information matrix (see Zhao and Joe, 2005; Bhat, 2014).  
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An alternative estimator for Ĥ  may be obtained by computing the quantity below for 
each decision-maker, and averaging across decision-makers:
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An important part of optimizing any such function is the generation of good start values. 
In our procedure, we came up with good start values in two steps as follows: (1) First, the 
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reduced form Equation (15) is estimated ignoring the latent variables; that is, setting all 

elements of d


 and ϖ  to zero, and setting the elements of α  to zero and setting Γ  to be a 
unit diagonal matrix, (2) Next, all the estimated parameters from step 1 are fixed, and the 

matrices/vectors α , d


 , ϖ , and Γ  are estimated. This produces initial estimates of all 
the relevant parameters, which is used to begin the iterations to maximize Equation (22). 
The optimization was undertaken using the GAUSS programming language, and we did 
not encounter any convergence issues during the optimization procedure.  

 3.4 Positive Definiteness 

The matrix Ω~  for each household has to be positive definite (that is, all the eigenvalues 
of the matrix should be positive, or, equivalently, the determinant of the entire matrix and 
every principal submatrix of Ω~  should be positive). The simplest way to guarantee this in 
our mixed model system is to ensure that the )( LL × correlation matrix Γ  is positive 

definite, and each matrix gΛ


(g=1,2,…,G) is also positive definite. An easy way to 

ensure the positive-definiteness of these matrices is to use a Cholesky decomposition and 
parameterize the CML function in terms of the Cholesky parameters. Then, we use the 
Cholesky-decomposed parameters as the ones to be estimated. That is, the Cholesky of an 
initial positive-definite specification of the correlation matrix Γ  and the covariance 
matrices gΛ


 (g=1,2,…,G) is taken before starting the optimization routine to maximize 

the CML function. Then, within the optimization procedure, one can construct the Ω~  
matrix, and then pick off the appropriate elements of this matrix to obtain the CML 
function at each iteration. Further, because the matrix Γ  is a correlation matrix, we write 
each diagonal element (say the aath element) of the lower triangular Cholesky matrix of 

Γ  as 
−

=

−
1

1

21
a

j
ajp , where the ajp  elements are the Cholesky factors that are to be 

estimated. In addition, note that the top diagonal element of each gΛ


 matrix has to be 

normalized to one (as discussed in Section 2.2), which implies that the first element of 
the Cholesky matrix of each gΛ


 is fixed to the value of one.  
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Chapter 4.  Simulation Experiment 

In this section, we present the design of, and results from, a simulation experiment to 
evaluate the performance of the MACML approach to recover parameters in a GHDM 
system from different finite sample sizes. For ease in interpretation and understanding, 
the simulation design is motivated from an integrated land use-transportation context. 
Specifically, consider the situation where an analyst wants to examine residential location 
choices and travel choices of an individual using a cross-sectional data set, with a specific 
interest on whether (and how much) a neo-urbanist design (compact built environment 
design, high bicycle lane and roadway street density, good land-use mix, and good transit 
and non-motorized mode accessibility/facilities) would help in reducing motorized auto 
ownership of the household of which the individual is a part, and in influencing the 
individual’s commute mode in a way that reduces solo auto mode use. In doing so, the 
analyst should consider what is commonly labeled as residential self-selection; that is, 
cross-sectional data reflect residential location preferences co-mingled with the travel 
preferences of individuals. For example, individuals who have an overall travel freedom 
and privacy orientation (typically associated with auto inclination) may locate themselves 
in suburban/rural neighborhoods (low population density, low bicycle lane and roadway 
street density, primarily single use residential land use, and auto-dependent urban 
design), own many motorized autos, and favor driving alone to work and other activities. 
On the other hand, a household whose members have a green and active lifestyle 
propensity may seek out urban neighborhoods so they can pursue their activities using 
non-motorized and transit modes of travel. If such self-selection effects in residence 
choices are ignored, when actually present, the result can be a “spurious” causal effect of 
neighborhood attributes on auto ownership and travel, and potentially misinformed BE 
design policies (see a detailed discussion in Bhat et al., 2014a) . But the self-selection 
may not be based solely on residential choice, and can also be based on auto ownership 
choice. Thus, individuals with a travel freedom and privacy orientation may both prefer 
more autos as well as be predisposed to traveling in motorized vehicles to work and other 
activities. As a consequence, any effect of the number of motorized vehicles on auto 
travel will be moderated by the travel freedom and privacy orientation of the individual.  

The potential self-selection effects above can be acknowledged by considering workers’ 
decisions associated with residential location, auto ownership, commute travel mode 
choice, and some quantification of non-commute travel as a multi-dimensional bundle. It 
is in this context that our simulation design is set. Residential location choice is 
represented as a nominal discrete choice among a multinomial set of three different types 
of BE designs as captured by designations as urban, suburban, and rural neighborhoods 
(these designations can be combinations of housing density and employment density; see 
Kim and Brownstone, 2013, Paleti et al., 2013, Cao and Fan, 2012, and Bhat et al., 
2014a, who all use such a density-based classification scheme as a representation of 
residential location choice as this simplifies the representation of residential choice 
alternatives and also alleviates the problem of strong multi-collinearity of density with 
other built environment attributes). In addition, we also use a second continuous 
outcome, the (logarithm of) commute distance for the individual, to characterize 
residential location choice. This is because it has been well established in the literature 
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that commute distance is one of the most important determinants of residential location 
(see, for example, Clark et al., 2003, Rashidi et al., 2012).4 Auto ownership is a count 
outcome, while commute travel mode choice is represented as a second nominal choice in 
the system from among three different modes of transportation – non-motorized 
transportation (NM), public transportation (PT), and motorized (private) transportation or 
MT (either as a driver or a passenger). Non-commute travel is quantified as a multi-
dimensional bundle of three ordinal variables that relate to intensities (occurrences) of 
weekly non-commute travel by NM, by PT, and by MT. However, since most household 
travel surveys capture only daily travel, we suppose that use of alternative modes over 
longer periods of time (as would be important particularly for NM and PT use) is 
obtained through an ordinal categorical indicator response from among three possibilities: 
(1) Never or about once a week, (2) about 2-3 times a week, and (3) four or more times in 
a week (see Sener et al., 2009 for a survey that captures non-commute travel in such 
ordinal categories). In all, our system has seven endogenous outcomes/indicators, with 
one continuous outcome (commute distance), three ordinal indicators (non-commute 
travel occurrences by NM, PT, and MT), one count outcome (auto ownership), and two 
nominal outcomes (residential choice location based on density categorization and 
commute mode choice). While modeling all of these as a joint bundle, we also 
accommodate structural relationships among the endogenous outcomes/indicators. In 
particular, we specify that commute distance and auto ownership will affect commute 
mode choice, and the geographic area of residential location (urban, suburban, or rural) 
will affect auto ownership, commute distance, and non-commute travel occurrences by 
NM and PT. 

 4.1 Experimental Design 

Consider a multi-dimensional choice bundle of residential location and activity-travel 
behavior, as dicussed in the previous section. In previous studies on the integration of 
land-use patterns and activity-travel behavior, such as Pinjari et al. (2011) and Bhat et al. 
(2014a), correlated unobserved effects among multiple (but limited) choice dimensions 
were captured through the error terms of the many individual dimensions, resulting in a 
relatively large dimensional covariance matrix. The difference between these earlier 
studies and this simulation study is that, as discussed in Section 1, the covariance in a 
large number of choice dimensions is captured in a parsimonious manner through a 
factor-analytic structure where the choice dimensions are a function of a smaller 
dimension of correlated latent constructs. In addition, such a specification provides 
structure to the jointness among the choice dimensions by appealing to theoretical 
psychological constructs. 

 4.2 The Structural Equation System 

Two latent variables associated with lifestyle and attitudes are employed as psychological 
constructs impacting the multi-dimensional choice bundle of residential location and 

                                                 
4 The implicit assumption here is that work location choices precede residential choice. While it is certainly possible 
that residential moves may motivate job moves, earlier research using panel data suggests that a vast majority (85% 
or more) of residential relocations follow a job move (see Rashidi et al., 2012). 
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activity-travel behavior. The latent variables are shown in Figure 1, where the ovals 
represent the latent constructs, while rectangles represent observed explanatory variables. 
The first latent factor is green lifestyle propensity )( *

1z  or the individual’s level of 
environmental consciousness, which is specified to be a function of whether the 
individual has a Bachelor’s degree or higher 1;( 11 =ww if individual has a Bachelor’s 
degree or higher and 0 otherwise) and whether the individual is male or female 

1;( 22 =ww if individual is male and 0 otherwise). These reflect the finding from earlier 
studies that individuals with a Bachelor’s degree or higher tend to be more active 
proponents and followers of ecologically friendly lifestyles (Paleti et al., 2013), as do 
women compared to men (see, for example, Liu et al., 2014 and Gifford and Nilsson, 
2014). The specified values of these effects (embedded within the 1α vector) are 0.8 (for 
the education effect) and -0.3 (for the male gender effect). The second factor is travel 
freedom/privacy affinity )( *

2z , generally associated with travel comfort/convenience and a 
sense of control over the travel experience. This latent variable is specified to be 
associated with men 1;( 22 =ww if individual is male and 0 otherwise), and high income 

individuals 1;( 33 =ww  if individual earns a high income and zero otherwise). Earlier 

studies, including Schwanen and Mokhtarian (2007), Jansen, 2012, Shiftan et al., 2008, 
and Day, 2000, have indicated that men and high income earners generally value travel 
freedom/privacy more than women and low income earners, respectively. The design 
values of these effects in the simulation (as embedded within the 2α  vector) are 0.2 and 
0.5, respectively. In the vector notation of Equation (2), the effects in Figure 1 may be 
written as follows: 
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where GLP is green lifestyle propensity and TFA is travel freedom/privacy affinity. The 
parameters in the matrix α  to be estimated can be stacked into a vector 

,8.0[)(Vech 11 == αα ,3.012 −=α ,2.022 =α ].5.033 =α  The correlation matrix of the 

error vector η  is specified as follows: 
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==

8.00.0

6.00.1

8.06.0

0.00.1

0.16.0

6.00.1
)(Var ΓΓLLΓη . 

In the matrix above, we allow a correlation (entry of -0.6) between the two latent 
propensity constructs of GLP and TFA to reflect the existence of the unobserved 
underlying value of individuality that affects both of these personality constructs. To 
ensure the positive definiteness of Γ , a Cholesky decomposition is conducted. In our 
specification, a single element is to be estimated in the matrix Γ : 6.0−=Γl . 
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Figure 1: Diagrammatic representation of the structural equation 
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 4.3 The Measurement Equation System  

The measurement equation system includes the non-nominal equation system 
εzdxγy * 

++=  (Equation (13) earlier) as well as the nominal equation system 

ςzbxU * ++= ϖ  (Equation (14) earlier). Within each of these systems, there are 
exogenous and endogenous outcome effects (embedded in γ  and γ  for the non-nominal 
system and in b for the nominal system), as well as latent construct effects (embedded in 

d


 and ϖ ). The simulation design effects specified for the non-nominal equation system 
(including both the exogenous and latent construct effects) are presented in Figure 2a, 
while the corresponding effects for the nominal equation system are presented in Figure 
2b. Finally, the endogenous variable effects (that is, the inter-relationships between the 
endogenous outcomes/indicators, which can only be recursive as discussed in Section 
2.2), are presented in Figure 2c. Each of these effects is discussed in turn in the 
subsequent sections, while Section 4.3.4 brings all parameters to be estimated together in 
the measurement equation system. Note that the design considers four exogenous 
variables: (1) whether the individual is an immigrant or not (a dummy variable 
“immigrant” taking the value of 1 if the individual is born in the US and 0 otherwise), (2) 
whether the individual owns or rents her/his household (a dummy variable “owns hh” 
taking the value of 1 if the individual owns her/his household and 0 otherwise), (3) 
number of children less than 11 years of age, and (4) number of young active adults (to 
represent the presence of the so-called millenials born between 1981 and 1996).  

 4.3.1 Non-Nominal Equation System with Exogenous and Latent Construct Effects 

This system is shown diagrammtically in Figure 2a. Immigrant status positively 
influences (log) commute distance, as it has been observed that immigrants have longer 
commutes than do non-immigrants (see Paleti et al., 2013). Further, individuals with 
young children are less likely to travel by non-motorized modes and more likely to travel 
by motorized vehicles (as they undertake pick up/drop off activities; see Sener et al., 
2009). Also, in the simulation design, we specify the number of young active adults in the 
individual’s household to negatively influence travel by motorized vehicles, as 
households with millenials tend to undertake their out-of-home activities less using 
private vehicles (see Bhat et al., 2014a). A total of four exogenous variable effects are 
specified above. However, there are also constants to be specified in the (log) commute 
distance equation, and for the latent propensities for the ordinal indicators. The constant 
in the (log) commute disance equation as well as the constant effects for all the ordinal 
indicators are set to the value of 1.0. 
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Figure 2a: Diagrammatic representation of the measurement equation for the non-nominal variables 
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Figure 2b: Diagrammatic representation of the measurement equation for the nominal variables 
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Figure 2c: Endogeneous effects 
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A total of five latent construct effects are also specified (see toward the right of Figure 
2a). As expected, a green lifestyle propensity (GLP) increases non-commute travel 
occurrences by non-motorized (NM) modes as well as increases non-commute travel 
occurrences by public transit (PT) modes. These effects satisfy the two-indicator rule for 
the GLP latent construct. Similarly, we expect travel freedom/privacy affinity (TFA) to 
be positively related to commute distance (see, for example, Schwanen and Mokhtarian, 
2007) and non-commute travel occurrences by motorized transport (MT) modes. These 
effects satisfy the two-indicator rule for the TFA latent construct. Finally, both GLP and 
TFA are specified to impact auto ownership, with the former having a negative effect and 
the latter a positive effect.  

As presented in Equation (13), the covariance matrix Σ


 of random error 
ε for non-

nominal indicators is restricted to be diagonal, with elements corresponding to ordinal 
and count indicators being normalized to 1. This leaves the variance component for the 
continuous outcome (logarirthm of commute distance), which is specified to be 1.25 in 
the simulation design. Thus, the one element to be estimated in the matrix Σ


 is 1.25, 

which we write as .25.1=
Σ
l   

There are three ordinal outcomes (non-commute travel occurrences by NM, PT, and MT), 
in the simulation design, which leads to the need to specify 2,

~
nψ  for each ordinal 

outcome n  ( 1,  2,  3)n =  (see discussion in Section 2.2). All of these threshold values are 
set to 1.5. In addition, we need to specify the parameters in the threshold function for the 
count outcome (corresponding to auto ownership). This refers to the coefficient vector 

γ
, the flexibility parameter vector ,),,( *,2,1, ′=

cecccc ϕϕϕ ϕ  and the dispersion parameter 

vector .),,( 21 ′= Cθθθ θ  For the 
γ coefficient vector, we include only a constant effect 

and another endogenous effect (the latter is discussed in the next section). The coefficient 
on the constant is specified to be 1.0. For the flexibility vector, we will drop the index c 
since we have only one count outcome in the simulation design. We also specifiy a single 
flexibility parameter .75.01 =ϕ  For the dispersion parameter vector (which collapses to a 
scalar because there is only a single count outcome), we specify .0.2=θ   

 4.3.2 Nominal Equation System with Exogenous and Latent Construct Effects 

Five exogenous effects and four latent construct effects are specified here (see Figure 2b). 
All of the exogenous effects specified have been reasonably well established in earlier 
studies. Immigrants tend to cluster in urban neighborhoods (see Bhat et al., 2013), while 
those who own households are less likely to reside in urban neighborhoods. There is also 
evidence that individuals with children tend to favor suburban neighorhoods due to the 
open spaces and good quality schools (Aditjandra et al., 2012), as do households with 
many young active adults (Brownstone and Golob, 2009). Further, as has been found in 
many earlier studies, immigrants, more so than US-born individuals, tend to use public 
transportation for their commute. In addition to the variable effects above, we also allow 
constants in two of the utilities for residential location and two of the utilities for 
commute mode. Specifically, we use a constant effect of 0.2 in the urban location utility 
and 0.3 in the suburban location utility (with the rural constant specified to be zero for 
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identification). Also, we use a constant effect of -0.5 for the PT mode, and -0.2 for the 
NM mode (with the MT mode constant specified to be zero).  

The latent construct effects specified are rather intuitive. These are specified to shift the 
utility of specific alternatives of the nominal variables. Essentially, then, in the notation 
of Section 2.2, gg ϑϖ = , because gβ is an identity matrix. Thus, for convenience, we 

will refer to the parameters to be estimated as being elements of gϖ , which are the same 

as the elements of .gϑ  For the residential location nominal outcome, individuals with a 

green lifestyle propensity tend to reside in urban neighborhoods, so that they can pursue 
their desired lifestyles due to greater opportunities to pursue city life while adopting 
green modes of transportation (Schwanen and Mokhtarian, 2007). For the commute mode 
nominal outcome, green lifestyle propensity is specified to positively affect the use of PT 
and NM modes, while travel freedom/privacy affinity increases the propensity to use the 
MT mode.  

The covariance matrix of ς is specified as follows.  
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)(Var

ΛΛLL

Λς

 (30)  

In the matrix Λ, four elements are to be estimated 
).36.1,60.0,49.1,70.0( ==== Λ66Λ65Λ33Λ32 llll   

 4.3.3 Endogenous Outcome Effects  

These effects correspond to recursive effects among the endogenous outcomes, as 
discussed just before Section 4.1. These are parts of the 

γ matrix (for the 
continuous/ordinal outcomes), the γ matrix (for the count outcomes), and the b matrix 
(for the nominal outcomes). The important point is that these are “cleansed” effects after 
accommodating unobserved covariance effects among the endogenous outcomes 
engendered by the presence of latent constructs, as discussed in the previous two 
sections. Figure 2c provides a pictorial representation for these endogenous effects. For 
the continuous/ordinal outcomes, we specify that urban dwelling leads to a shorter 
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commute distance, and more non-commute travel occurrences by the NM and PT modes 
(see Paleti et al., 2013). For the auto count variable, several earlier studies have 
established that urban dwellers tend to own fewer vehicles even after accounting for any 
residential self-selection effects (see, for example, Bhat and Guo, 2007). This effect is 
specified through the threshold in the count model; that is, in the x  vector with a 
corresponding coefficient vector γ  (the γ  matrix becomes a vector in our simulation 
design because there is only one count variable). In particular, in our formulation of the 
count model, a positive coefficient element in γ  implies that an increase in the 
corresponding element of x  shifts all the thresholds toward the left of the auto ownership 
propensity scale (see Castro et al., 2011), which has the effect of reducing the probability 
of zero cars, while a negative coefficient in γ  implies that an increase in the 
corresponding element of x  shifts all the thresholds toward the right of the auto 
ownership propensity scale, which has the effect of increasing the probability of zero 
cars. In our simulation design, we impose a negative coefficient of -0.5.  

For the nominal variables, our design specifies a positive effect of urban dwelling on the 
propensity to use PT as the commute mode, and a negative effect of car ownership and 
commute distance on the use of the NM mode for the commute. 

 4.3.4 Overall Measurement Equation System 

The overall measurement equation for the vector [ ]′′′= UyyU ,


 takes the following 

mathematical form: 
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Based on the above, and using the notations employed in Section 2.2., the parameters to 
be estimated in the measurement equation above include the following: 

Vech( )
γ  = [ 11γ = 1, 12γ = 0.5, 18γ = -0.3, 11

~γ = 1, 14
~γ = -0.2, 18

~γ = 0.6, 21
~γ = 1, 28

~γ = 0.2, 

31
~γ = 1, 34

~γ = 0.4, 35
~γ = -0.3], 

]5.0,1[)(Vech 1811 −=== γγ 
1γ (this is the vector corresponding to the coefficients on the 

constant and the urban dwelling variable embedded in the threshold in the auto ownership 
count model), 

,5.0,3.0,2.0,5.0,5.0,4.0,2.0[)Vech( 221125124121113112111 −====−==== bbbbbbbb
],4.0,6.0,2.0,2.0,3.0 237236231228222 −=−=−=== bbbbb  

]5.0,5.0,3.0
~

,2.0
~

,6.0
~

,2.0[)Vech( 121132211112 =−====== dddddd


d  , and 

,4.0,2.0,4.0[Vech( 221212111 ==== ϖϖϖ)ϖ ]6.0231 =ϖ . 

In addition, we have the variance component for the continuous outcome .25.1=
Σ
l  the 

flexibility parameter 75.01 =ϕ  and the dispersion parameter vector 0.2=θ  for the auto 

ownership count outcome, the single element )6.0( −=Γl  in the covariance matrix of the 
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error terms in the structural equation system, and the parameters for the covariance 
matrix of the nominal outcomes: .36.1,60.0,49.1,70.0 ==== Λ66Λ65Λ33Λ32 llll  

 4.4 Data Generation Process  

To generate the simulated dataset, the first step is to develop values for the exogenous 
variables in the vectors w  and x . There are six dummy variables in these two vectors, 
corresponding to bachelor’s degree or higher )( 1w , person lives alone )( 2w , male ),( 3w

high income ),( 4w  immigrant )( 1x , and own household ).( 2x  To construct these dummy 
variables, independent values were drawn from the standard uniform distribution. If the 
value drawn was less than 0.5, the value of ‘0’ was assigned for the dummy variable. 
Otherwise, the value of ‘1’ was assigned. For the two count exogenous variables 
corresponding to the number of children less than 11 years of age and the number of 
young active adults, a maximum value for each variable was first assigned (three for the 
first, and five for the second). Then, the range of the uniform distribution (0 to 1) was 
divided into as many equal ranges as the maximum value for the count plus one. 
Independent draws for the two count variables were made from the uniform distribution, 
and the value assigned of the count was based on the range in which a draw fell. For 
example, for the “number of children less than 11 years” variable, four equal intervals 
were created: [0.00, 0.25), [0.25, 0.50), [0.50, 0.75), or [0.75, 1.00]. If a draw was 
between 0.00 and 0.25 (but not including 0.25 exactly), a value of 0 was assigned for the 
variable; if a draw was between 0.25 and 0.5 (but not including 0.50 exactly), a value of 1 
was assigned and so on. 

The procedure above is used to construct a synthetic sample of Q=1000, 2000, and 3000 
realizations of the exogenous variables. We consider different samples sizes to assess the 
accuracy and appropriateness of the asymptotic properties of the MACML estimator for 
finite sample sizes. Once drawn, the exogenous variables are held fixed for the rest of the 
simulation exercise. In the rest of this section, we will discuss the procedure to generate 
the data set assuming Q=1000 observations (the same procedure may be applied for 
Q=2000 and Q=3000 observations). For each of the 1000 observations, a specific 
realization of the vector ),( ′′′ ςε )]1)[( ×+ GE


 is drawn from the multivariate distribution 

with mean 110  (a column vector of zero values of dimension 11) and covariance structure 

given by Ω  in Equation (16). The sub-vector of the mean vector 2B  that corresponds to 
the utilities of the three residential choice alternatives is also computed using the 
expression in Equation (16). Then, the realization corresponding to ),,( 1312111 ′= ςςςς (the 

error terms drawn for the three residential choice alternatives) is added to the mean vector 
for the three residential choice alternatives to obtain the realization of 

),,( ,1,1,11 ′= ruralsuburbanurban UUUU for each observation. The alternative with the highest 

utility value is then picked, and identified as the chosen residential choice alternative for 
each observation. Next, the continuous outcome 1y  is generated based on the exogenous 
variables, the design parameters, and the realization of the value of 1ε  from earlier. 
Similarly, the latent continuous values for the ordinal indicators are also generated, and 
then translated into ordinal outcomes based on comparison with the corresponding design 
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thresholds. For the auto ownership count outcome, the latent continuous value is 
generated exactly as for the ordinal indicators. However, the thresholds also need to be 
computed based on the design parameters as well as the realized actual value of the urban 
residential choice outcome. Then, the latent continuous value for the count outcome is 
translated into an actual count outcomes based on a comparison with the computed 
thresholds. Finally, the utilities for the commute mode choice alternatives are computed 
based on exogenous variables, all realized values of the other endogenous outcomes, as 
well as the realization corresponding to ),,( 2322212 ′= ςςςς  from earlier (the error terms 

drawn for the three commute mode choice alternatives). 

The above data generation process is undertaken 200 times with different realizations of 
the random errom components to generate 200 datasets for each sample size. The 
MACML estimator is applied to each dataset to estimate the 57 underlying parameters. A 
single random permutation is generated for each individual (the random permutation 
varies across individuals, but is the same across iterations for a given individual) to 
decompose the MVNCD function into a product sequence of marginal and conditional 
probabilities (see Section 2.1 of Bhat, 2011)5. In order to obtain a sense of the 
approximation error (explained in the following subsection), 10 datasets are randomly 
selected from the 200 datasets for each sample size (i.e., N=1000, 2000, and 3000). Then 
the estimator is applied to each dataset 10 times with different permutations. Based on the 
100 estimations (10 datasets × 10 runs with different permutations per dataset) for each 
sample size, the estimates of approximation error are derived. 

 4.5 Performance Evaluation 

The performance of the MACML inference approach in estimating the parameters of the 
GHDM and the corresponding standard errors is evaluated as follows (the discussion 
below is for a specific sample size; the same procedure is applied for evaluating 
performance with the different sample sizes of 1000, 2000, and 3000. 

(1) Estimate the MACML parameters for the 200 datasets. Estimate the standard errors 
using the Godambe (sandwich) estimator.  

(2) Compute the mean for each model parameter across the 200 datasets to obtain a 
mean estimate. Compute the absolute percentage (finite sample) bias (APB) of the 
estimator as: 

100
 valuetrue

 valuetrue-estimatemean ×=APB                   (31) 

(3) Compute the standard deviation of the mean estimate across the 200 datasets, and label this 
as the finite sample standard deviation or FSSD (essentially, this is the empirical standard 
error). 

                                                 
 5 Technically, the MVNCD approximation should improve with a higher number of permutations in the MACML 
approach. However, when we investigated the effect of different numbers of random permutations per individual, 
we noticed little difference in the estimation results between using a single permutation and higher numbers of 
permutations, and hence we settled with a single permutation per individual. 
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(4) Compute the mean standard error for each model parameter across the 200 datasets, 
and label this as the asymptotic standard error or ASE (essentially this is the 
standard error of the distribution of the estimator as the sample size gets large). 
Compute the ASE as a percentage of the mean estimate.  

(5) Next, to evaluate the accuracy of the asymptotic standard error formula as computed 
using the MACML inference approach for the finite sample size used, compute the 
absolute percentage bias of the asymptotic standard error (APBASE) for each 
parameter relative to the corresponding finite sample standard deviation. 

100
FSSD

FSSD-ASE ×=APBASE   

(6) For each of the randomly selected 10 datasets (out of the 200 datasets), compute the 
mean estimate (10ME) for each model parameter across the 10 random permutations 
used for that dataset (to evaluate the MVNCD function). Then, for each of the 10 
datasets, compute the standard deviation of the parameter values (across 
permutations) around the 10ME value. Take the mean of the standard deviation 
value across all the 10 datasets, and label this as the approximation error 
(APERR). 

 4.6 Simulation Results  

The simulation results for Q=1000, 2000, and 3000 are presented in Tables 2, 3, and 4, 
respectively. The tables provide the true value of the parameters (second column), 
followed by the parameter estimate results and the standard error estimate results.  

A number of observations may be made from the tables. First, the ability of the MACML 
approach to recover the parameters underlying the GHDM model is pretty good, as may 
be observed from the magnitude of the absolute percentage bias (APB) values. In 
particular, the mean APB value (see the bottom row of the third column under 
“Parameter Estimates”) is 9.28% with 1000 observations, reducing to 8.39% with 2000 
observations and further to 6.29% with 3000 observations. Overall, the difference 
between 1000 and 2000 observations in more accurately recovering parameters is 
moderate. But there is a larger difference in the APB values appears when moving from 
2000 observations to 3000 observations, suggesting that there are critical thresholds in 
the number of observations in terms of recovering parameters well. Second, the 
parameters corresponding to the effects of exogenous variables on the latent variables 
(that is, the elements of )(Vech α ), the effects of the latent variables on the non-nominal 

outcomes (that is, the elements of Vech( )

d ), and the effects of the latent variables on the 

nominal outcomes (that is, the elements of )(Vech ϖ ) are generally relatively more 
difficult to accurately estimate compared to other parameters. Thus, for the case of 
Q=1000 observations, the APB value for the )(Vech α elements range from 1.006% to 

28.663% with a mean APB of 14.34), the APB value for the Vech( )

d  elements range 

between 6.261% and 47.373% (with a mean APB of 21.16%), and the APB values for the 
)(Vech ϖ elements range from 1.429% to 33.50% (with a mean of 12.43%). For datasets 

with 1000, 2000, and 3000 observations, the mean APB values for (a) the )(Vech α  
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elements are 14.34%, 14.79%, and 7.42%, respectively, (b) the Vech( )

d  elements are 

21.16%, 20.27%, and 15.34%, respectively, and (c) for the )(Vech ϖ elements are 
12.43%, 7.03%, and 10.87%, respectively. The relatively less accurate recovery of these 
sets of parameters is intuitive. As one can notice from Equations (15) and (16), the only 

way to disentangle the effects of the d


 matrix and the α  matrix in the first (non-

nominal) part of Equation (15) is through the identification of the d


 matrix elements 
from the covariance matrix Ω . Similarly, the only way to disentangle the effects of the 
ϖ  matrix and the α  matrix in the second (nominal) part of Equation (15) is through the 

identification of the ϖ  matrix elements from the covariance matrix Ω . As such, the d


 
matrix elements and the ϖ  matrix elements enter into the covariance matrix Ω  in a non-
linear fashion (see Equation 16), and Ω  itself enters into the composite likelihood 
function (Equation 21) in a complex manner. It is also interesting to note that the 
improvement in the accuracy of recovery is substantial for the )(Vech α  and Vech( )


d

parameters as one goes from 2000 to 3000 observations, which is essentially driving the 
substantially overall improved performance with 3000 observations relative to 2000 
observations as pointed out earlier. An additional point to note here is that, while there 
are some variations in the ability to recover the latent variable loadings on different kinds 
of variables (continuous, ordinal, count, and nominal variables), there were no clear 
systematic patterns in the level of accuracy in estimating the latent factor loadings for 
different types of dependent variables. Third, the effects of exogenous and endogenous 
variables on the different kinds of variables (corresponding to Vech(γ ), Vech(γ ), and 
Vech(b)) are accurately recovered. In general, it appears that these effects are less 
accurately recovered for the continuous dependent variable, relative to other types of 
variables (see the higher APB value for the 11γ , 12γ , and 18γ  elements relative to other γ
and b parameters in the tables). Fourth, and moving on to the standard error estimates, the 
entries in the “finite sample standard error (FSSE)” column indicate that the empirical 
ability of the MACML estimator to pin down parameters (that is, the precision of 
parameter recovery) is quite good. In particular, as a percentage of the true values, the 
mean FSSE values across all parameters are 34.09, 22.54, and 18.97 for 1000, 2000, and 
3000 observations, respectively (see the last row of the sub-column entitled “% of true 
value” under the FSSE column). However, once again, and for the same reason that it is 
difficult to accurately recover the parameters of )(Vech α , )(Vech d


, and )(Vech ϖ , the 

FSSE values are relatively higher for these sets of parameters than for all parameters as a 
whole. For datasets with 1000, 2000, and 3000 observations, the FSSE values as a 
percentage of the true values for (a) the )(Vech α  elements are 40%, 29%, and 20.6%, 

respectively, (b) the Vech( )

d  elements are 40.9%, 25.1%, and 23.4%, respectively, and 

(c) for the )(Vech ϖ  elements are 41.8%, 33.6%, and 29.2%, respectively. Overall, it is 
difficult to both accurately and precisely recover the effects of exogenous variables on 
the latent variables (in the structural equation system) as well as the effects of the latent 
variables on the outcomes (in the measurement equation system). The suggestion is the 
exercise of caution when GHDM models are being estimated with few observations. Our 
results suggest that there may be a need for 3000 observations or so for good accuracy 
and precision in the estimated coefficients. Of course, the situation is likely to be context-
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specific, but our simulation analysis does provide some guidance. Interestingly, the FSSE 
values as a percentage of true values are also rather high for the effects of the exogenous 
and non-nominal endogenous variables on the utility functions of the nominal variables 
(that is, the elements of the b matrix). The FSSE values are 45.4%, 30.5%, and 30.7% for 
the 1000, 2000, and 3000 observation cases, respectively. This is a case where the APB is 
very low (accuracy is high) for the elements of the b matrix, but the precision of 
estimates is not very good. The relatively poor precision of estimates in the nominal 
variable equation is not all that surprising, given that multiple latent variables 
(corresponding to the utilities of alternatives) are used to characterize a nominal outcome, 
unlike the case of the non-nominal outcomes where a single underlying (observed or 
latent) variable is used to characterize the observed outcomes. Fifth, the asymptotic 
formula of the CML approach performs reasonably well in estimating the FSSEs, based 
on the APBASE values. The mean APBASE values are 25.02%, 16.20%, and 22.69%. 
While these may not seem small, one should keep in mind that the FSSE values 
themselves are quite small, leading to rather high APBASE values even if the ASE value 
is close to the FSSE value in actual magnitude. Further, the APBASE value does not 
show a decrease as the number of observations increases because the FSSE value itself 
keeps decreasing as the number of observations increase. In general, the FSSE and the 
ASE values are not too different from one another regardless of sample size, indicating 
that the asymptotic formula is performing quite well in estimating the finite sample 
standard error even for a sample size of the order of 1000. Finally, the APERR in the last 
column of all three tables indicates that even a single permutation (for each observation) 
of the approximation approach used to evaluate the MVNCD function provides adequate 
precision. For the case with 1000 observations, the values of the APERR range between 
0.00007 and 0.00721, and the mean APERR is 0.00124. At Q=2000, the minimum and 
maximum APERR values are 0.00010 and 0.00604, respectively, with the mean APERR 
decreasing to 0.00083. When Q=3000, the minimum and maximum APERR values are 
0.00004 and 0.00150, respectively, with the mean APERR decreasing further to 0.00032. 
More importantly, the approximation error (as a percentage of the FSSE), averaged 
across all the parameters, is of the order of 0.73%, 0.75%, and 0.37% for 1000, 2000, and 
3000 observations, respectively. This is clear evidence that the convergent values are 
about the same for a given data set regardless of the permutation used for the 
decomposition of the multivariate probability expression. 

  



 

40 

Table 2: Simulation Results for the 1000-Observations Case with 200 Datasets  

Para-
meters 

True 
Value 

Parameters Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

APB 
FSSE ASE 

APBASE 
(%) 

APERR 
Value 

% of true 
value 

Value 
% of true 

value 

   11α    0.80 0.790 0.010  1.263 0.160 20.000 0.142 17.750 11.250 0.00082 

12α    -0.30   -0.297 0.003  1.006 0.135 45.000 0.094 31.333 30.370 0.00091 

   22α    0.20 0.147 0.053 26.418 0.126 63.000 0.094 47.000 25.397 0.00074 

   23α    0.50 0.357 0.143 28.663 0.158 31.600 0.104 20.800 34.177 0.00088 

Γl    -0.60   -0.517 0.083 13.833 0.322 53.667 0.218 36.333 32.298 0.00150 

11γ  1.00 1.059 0.059  5.900 0.063  6.300 0.116 11.600 84.127 0.00014 

12γ  0.50 0.411 0.089 17.742 0.067 13.400 0.118 23.600 76.119 0.00022 

18γ   -0.30 -0.244 0.056 18.505 0.061 20.333 0.052 17.333 14.754 0.00019 

11
~γ    1.00 0.865 0.135 13.500 0.121 12.100 0.101 10.100 16.529 0.00035 

14
~γ   -0.20 -0.201 0.001  0.587 0.035 17.500 0.040 20.000 14.286 0.00016 

18
~γ    0.60 0.606 0.006  1.069 0.102 17.000 0.095 15.833   6.863 0.00041 

21
~γ    1.00 0.836 0.164 16.400 0.064   6.400 0.039   3.900 39.063 0.00014 

28
~γ    0.20 0.197 0.003   1.721 0.069 34.500 0.072 36.000   4.348 0.00017 

31
~γ    1.00 0.847 0.153 15.300 0.112 11.200 0.100 10.000 10.714 0.00010 

34
~γ  0.40 0.423 0.023  5.650 0.050 12.500 0.043 10.750 14.000 0.00015 

35
~γ   -0.30 -0.315 0.015  4.868 0.043 14.333 0.039 13.000   9.302 0.00007 

11γ


   1.00 0.875 0.125 12.500 0.136 13.600 0.093   9.300 31.618 0.00043 

18γ


  -0.50 -0.535 0.035 7.099 0.090 18.000 0.067 13.400 25.556 0.00033 

111b  0.20 0.197 0.003 1.438 0.153 76.500 0.115 57.500 24.837 0.00160 

112b  0.40 0.398 0.002 0.395 0.125 31.250 0.101 25.250 19.200 0.00098 

113b   -0.50 -0.491 0.009  1.700 0.134 26.800 0.112 22.400 16.418 0.00127 

121b  0.30 0.320 0.020  6.664 0.172 57.333 0.134 44.667 22.093 0.00074 

124b  0.20 0.190 0.010  5.242 0.069 34.500 0.063 31.500   8.696 0.00036 

125b  0.30 0.291 0.009  3.034 0.107 35.667 0.090 30.000 15.888 0.00044 

221b   -0.50 -0.513 0.013  2.575 0.123 24.600 0.090 18.000 26.829 0.00057 

222b  0.30 0.300 0.000  0.105 0.097 32.333 0.075 25.000 22.680 0.00086 

228b  0.20 0.215 0.015  7.303 0.100 50.000 0.071 35.500 29.000 0.00071 

231b   -0.20 -0.197 0.003  1.595 0.160 80.000 0.134 67.000 16.250 0.00414 
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Table 2 (Cont.): Simulation Results for the 1000-Observations Case with 200 Datasets 

Para-
meters 

True 
Value 

Parameters Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

APB 
FSSE ASE 

APBASE 
(%) 

APERR 
Value 

% of true 
value 

Value 
% of true 

value 

236b   -0.60 -0.591 0.009  1.481 0.287 47.833 0.345 57.500 20.209 0.00201

237b   -0.40 -0.405 0.005  1.329 0.193 48.250 0.240 60.000 24.352 0.00157

12d  0.20  0.173 0.027 13.280 0.061 30.500 0.043 21.500 29.508 0.00058

11

~
d  0.60  0.639 0.039 6.544 0.187 31.167 0.147 24.500 21.390 0.00093

21

~
d  0.20  0.213 0.013 6.261 0.070 35.000 0.078 39.000 11.429 0.00226

32

~
d  0.30  0.442 0.142 47.373 0.173 57.667 0.127 42.333 26.590 0.00083

11d


  -0.50 -0.435 0.065 12.970 0.133 26.600 0.096 19.200 27.820 0.00078

12d


 0.50  0.703 0.203 40.513 0.322 64.400 0.191 38.200 40.683 0.00059

111ϖ  0.40  0.406 0.006 1.429 0.120 30.000 0.134 33.500 11.667 0.00428

212ϖ    0.20  0.267 0.067 33.500 0.169 84.500 0.096 48.000 43.195 0.00115

221ϖ    0.40 0.424 0.024 5.899 0.129 32.250 0.120 30.000  6.977 0.00262

231ϖ  0.60 0.653 0.053 8.900 0.301 50.167 0.325 54.167  7.973 0.00263

Σl  1.25 1.049 0.201 16.080 0.042   3.360 0.047   3.760   11.905 0.00040

12ψ  1.50 1.472 0.028 1.894 0.158 10.533 0.119   7.933 24.684 0.00075

22ψ  1.50 1.453 0.047 3.119 0.064   4.267 0.038   2.533  40.625 0.00089

32ψ  1.50 1.524 0.024 1.631 0.152 10.133 0.102   6.800   32.895 0.00035

1φ  0.75 0.703 0.047 6.202 0.161 21.467 0.087 11.600   45.963 0.00026

θ 2.00 1.680 0.320 16.000 0.719 35.950 0.347 17.350   51.739 0.00062

32Λl  0.70 0.715 0.015 2.213 0.302 43.143 0.231 33.000   23.510 0.00235

33Λl  1.49 1.577 0.087 5.871 1.003 67.315 0.505 33.893   49.651 0.00549

65Λl  0.60 0.604 0.004 0.632 0.417 69.500 0.380 63.333     8.873 0.00721

66Λl  1.36 1.481 0.121 8.894 1.046 76.912 0.976 71.765     6.692 0.00392

Overall mean value across 
parameters 

0.056  9.28 0.187  34.09 0.148  28.49     25.02 0.00124 
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Table 3: Simulation Results for the 2000-Observations Case with 200 Datasets  

Para-
meters 

True 
Value 

Parameters Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

APB 
FSSE ASE 

APBASE 
(%) 

APERR 
Value 

% of true 
value 

Value 
% of true 

value 

   11α  0.80   0.859 0.059  7.417 0.132 16.500 0.121 15.125   8.333 0.00060

12α    -0.30  -0.303 0.003  1.135 0.105 35.000 0.072 24.000 31.429 0.00060

   22α  0.20   0.160 0.040 19.908 0.083 41.500 0.064 32.000 22.892 0.00030

   23α  0.50   0.347 0.153 30.681 0.116 23.200 0.070 14.000 39.655 0.00037

Γl    -0.60 -0.552 0.048  8.000 0.234 39.000 0.182 30.333 22.222 0.00060

11γ  1.00   1.066 0.066  6.600 0.048 4.800 0.042  4.200 12.500 0.00039

12γ  0.50   0.407 0.093 18.571 0.047 9.400 0.043  8.600   8.511 0.00043

18γ    -0.30 -0.255 0.045 14.998 0.048 16.000 0.044    14.667   8.333 0.00021

11
~γ     1.00 0.851 0.149 14.900 0.083 8.300 0.069      6.900 16.867 0.00028

14
~γ    -0.20 -0.192 0.008  4.002 0.027 13.500 0.016      8.000 40.741 0.00016

18
~γ     0.60 0.572 0.028  4.608 0.070 11.667 0.063    10.500 10.000 0.00032

21
~γ     1.00 0.876 0.124 12.400 0.045 4.500 0.028 2.800 37.778 0.00012

28
~γ     0.20 0.191 0.009  4.429 0.049 24.500 0.051    25.500   4.082 0.00011

31
~γ     1.00 0.856 0.144 14.400 0.073 7.300 0.068 6.800   6.849 0.00011

34
~γ  0.40 0.407 0.007  1.713 0.029 7.250 0.028 7.000   3.448 0.00011

35
~γ    -0.30 -0.306 0.006  1.944 0.027 9.000 0.026 8.667   3.704 0.00010

11γ


    1.00  0.852 0.148 14.800 0.093 9.300 0.065 6.500 30.108 0.00026

18γ


   -0.50 -0.528 0.028  5.560 0.069 13.800 0.046 9.200 33.333 0.00016

111b  0.20  0.193 0.007  3.699 0.142 71.000 0.135    67.500   4.930 0.00099

112b  0.40  0.394 0.006  1.518 0.083 20.750 0.070    17.500 15.663 0.00081

113b    -0.50 -0.497 0.003  0.546 0.090 18.000 0.078    15.600 13.333 0.00079

121b  0.30  0.305 0.005  1.548 0.105 35.000 0.093    31.000 11.429 0.00074

124b  0.20  0.195 0.005  2.424 0.043 21.500 0.044    22.000  2.326 0.00036

125b  0.30  0.301 0.001  0.406 0.059 19.667 0.064    21.333  8.475 0.00035

221b    -0.50 -0.517 0.017  3.445 0.081 16.200 0.061    12.200 24.691 0.00091

222b  0.30  0.297 0.003  0.849 0.059 19.667 0.052    17.333 11.864 0.00042

228b  0.20  0.201 0.001  0.524 0.059 29.500 0.049    24.500 16.949 0.00043

231b    -0.20 -0.223 0.023 11.265 0.139 69.500 0.142    71.000  2.158 0.00145
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Table 3 (Cont.): Simulation Results for the 2000-Observations Case with 200 Datasets 

Para-
meters 

True 
Value 

Parameters Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

APB 
FSSE ASE 

APBASE 
(%) 

APERR
Value 

% of true 
value 

Value 
% of true 

value 

236b   -0.60 -0.612 0.012  2.011 0.141 23.500 0.148 24.667   4.965 0.00158

237b   -0.40 -0.408 0.008  1.983 0.085 21.250 0.099 24.750   16.471 0.00132

12d  0.20  0.164 0.036 18.018 0.036 18.000 0.029 14.500 19.444 0.00027

11

~
d  0.60  0.565 0.035  5.802 0.130 21.667 0.100 16.667 23.077 0.00089

21

~
d  0.20  0.192 0.008  4.200 0.057 28.500 0.053 26.500   7.018 0.00123

32

~
d  0.30  0.419 0.119 39.685 0.088 29.333 0.084 28.000   4.545 0.00068

11d


  -0.50  -0.394 0.106 21.157 0.079 15.800 0.063 12.600  20.253 0.00046

12d


 0.50 0.664 0.164 32.737 0.187 37.400 0.129 25.800 31.016 0.00062

111ϖ  0.40 0.396 0.004   0.947 0.084 21.000 0.092 23.000  9.524 0.00213

212ϖ    0.20 0.245 0.045 22.500 0.134 67.000 0.118 59.000   11.940 0.00153

221ϖ    0.40 0.386 0.014  3.470 0.083 20.750 0.081 20.250 2.410 0.00218

231ϖ  0.60 0.593 0.007  1.222 0.152    25.333 0.123 20.500   19.079 0.00168

Σl  1.25 1.099 0.151 12.080 0.028  2.240 0.033  2.640   17.857 0.00012

12ψ  1.50 1.415 0.085  5.680 0.098  6.533 0.076  5.067   22.449 0.00064

22ψ  1.50 1.447 0.053  3.535 0.042  2.800 0.043  2.867 2.381 0.00040

32ψ  1.50 1.501 0.001  0.055 0.067  4.467 0.065  4.333 2.985 0.00038

1φ  0.75 0.697 0.053  7.117 0.092    12.267 0.057 7.600  38.043 0.00017

θ 2.00 1.764 0.236 11.800 0.398    19.900 0.167 8.350   58.040 0.00055

32Λl  0.70 0.704 0.004 0.546 0.159    22.714 0.158    22.571  0.629 0.00120

33Λl  1.49 1.512 0.022 1.458 0.486    32.617 0.564   37.852   16.049 0.00313

65Λl  0.60 0.621 0.021 3.429 0.227    37.833 0.248   41.333 9.251 0.00186

66Λl  1.36 1.468 0.108 7.945 0.555    40.809 0.665   48.897   19.820 0.00604

Overall mean value across 
parameters 

0.050 8.39 0.113      22.54 0.102      20.25     16.20 0.00083 
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Table 4: Simulation Results for the 3000-Observations Case with 200 Datasets  

Para-
meters 

True 
Value 

Parameters Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

APB 
FSSE ASE 

APBASE 
(%) 

APERR
Value 

% of true 
value 

Value 
% of true 

value 

   11α  0.80 0.763 0.037  4.641 0.081     10.125 0.071   8.875   12.346 0.00027

12α    -0.30 -0.275 0.025  8.452 0.071     23.667 0.050 16.667 29.577 0.00027

   22α  0.20 0.194 0.006  3.000 0.061     30.500 0.048 24.000 21.311 0.00017

   23α  0.50 0.432 0.068 13.600 0.090     18.000 0.052 10.400 42.222 0.00013

Γl    -0.60 -0.583 0.017  2.833 0.087     14.500 0.115 19.167 32.184 0.00037

11γ  1.00 1.068 0.068  6.800 0.036       3.600 0.033  3.300     8.333 0.00004

12γ  0.50 0.406 0.094 18.792 0.036       7.200 0.035  7.000     2.778 0.00005

18γ    -0.30 -0.249 0.051 16.857 0.039     13.000 0.036     12.000     7.692 0.00006

11
~γ     1.00 0.957 0.043 4.300 0.067       6.700 0.059  5.900   11.940 0.00015

14
~γ    -0.20 -0.200 0.000 0.057 0.023     11.500 0.014  7.000   39.130 0.00010

18
~γ     0.60 0.606 0.006 1.008 0.068     11.333 0.055  9.167   19.118 0.00017

21
~γ     1.00 0.963 0.037 3.700 0.040       4.000 0.037  3.700 7.500 0.00005

28
~γ     0.20 0.201 0.001 0.332 0.040     20.000 0.042     21.000 5.000 0.00004

31
~γ     1.00 0.965 0.035 3.500 0.059       5.900 0.055 5.500 6.780 0.00005

34
~γ  0.40 0.412 0.012 3.114 0.024       6.000 0.014      3.500   41.667 0.00004

35
~γ    -0.30 -0.310 0.010 3.392 0.022       7.333 0.013      4.333   40.909 0.00004

11γ


    1.00 0.956 0.044 4.400 0.090       9.000 0.055      5.500   38.889 0.00013

18γ


   -0.50 -0.527 0.027 5.323 0.058     11.600 0.038      7.600   34.483 0.00010

111b  0.20 0.211 0.011 5.429 0.145     72.500 0.110    55.000   24.138 0.00030

112b  0.40 0.394 0.006 1.576 0.075     18.750 0.058    14.500   22.667 0.00034

113b    -0.50 -0.495 0.005 0.914 0.084     16.800 0.065    13.000   22.619 0.00044

121b  0.30 0.317 0.017 5.553 0.101     33.667 0.075    25.000   25.743 0.00020

124b  0.20 0.194 0.006 3.239 0.047     23.500 0.037    18.500   21.277 0.00014

125b  0.30 0.294 0.006 2.053 0.065     21.667 0.052    17.333   20.000 0.00016

221b    -0.50 -0.512 0.012 2.379 0.066     13.200 0.049      9.800   25.758 0.00035

222b  0.30 0.297 0.003 1.094 0.051     17.000 0.043    14.333   15.686 0.00015

228b  0.20 0.205 0.005 2.471 0.052     26.000 0.040    20.000   23.077 0.00022

231b    -0.20 -0.206 0.006 3.011 0.146     73.000 0.188    94.000   28.767 0.00038
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Table 4 (Cont.): Simulation Results for the 3000-Observations Case with 200 Datasets 

Para-
meters 

True 
Value 

Parameters Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

APB 
FSSE ASE 

APBASE 
(%) 

APERR
Value 

% of true 
value 

Value 
% of true 

value 

236b   -0.60  -0.609 0.009  1.537 0.159 26.500 0.201 33.500 26.415 0.00037

237b   -0.40  -0.413 0.013  3.272 0.105 26.250 0.137 34.250 30.476 0.00041

12d  0.20   0.155 0.045 22.334 0.036 18.000 0.023 11.500 36.111 0.00018

11

~
d  0.60   0.668 0.068 11.286 0.119 19.833 0.087 14.500 26.891 0.00060

21

~
d  0.20   0.221 0.021 10.576 0.047 23.500 0.027 13.500 42.553 0.00052

32

~
d  0.30   0.352 0.052 17.333 0.078 26.000 0.064 21.333 17.949 0.00035

11d


  -0.50  -0.426 0.074 14.881 0.071 14.200 0.052 10.400 26.761 0.00022

12d


 0.50   0.578 0.078 15.600 0.196 39.200 0.117 23.400 40.306 0.00018

111ϖ  0.40   0.423 0.023 5.775 0.083 20.750 0.077    19.250  7.229 0.00090

212ϖ    0.20   0.164 0.036 18.000 0.110 55.000 0.100    50.000  9.091 0.00051

221ϖ    0.40   0.436 0.036 9.100 0.067 16.750 0.068    17.000  1.493 0.00086

231ϖ  0.60   0.664 0.064 10.593 0.145 24.167 0.107    17.833   26.207 0.00100

Σl  1.25   1.119 0.131 10.480 0.025  2.000 0.027      2.160 8.000 0.00007

12ψ  1.50   1.481 0.019 1.253 0.090  6.000 0.071  4.733   21.111 0.00038

22ψ  1.50   1.450 0.050 3.307 0.032  2.133 0.036  2.400   12.500 0.00018

32ψ  1.50   1.511 0.011 0.748 0.063  4.200 0.057  3.800 9.524 0.00015

1φ  0.75   0.703 0.047 6.275 0.088    11.733 0.050  6.667   43.182 0.00008

θ 2.00   1.855 0.145 7.250 0.173 8.650 0.142  7.100   17.919 0.00017

32Λl  0.70   0.718 0.018 2.528 0.165    23.571 0.128    18.286   22.424 0.00064

33Λl  1.49   1.503 0.013 0.894 0.191    12.819 0.125 8.389   34.555 0.00143

65Λl  0.60   0.612 0.012 2.038 0.116    19.333 0.081    13.500   30.172 0.00055

66Λl  1.36   1.465 0.105 7.711 0.242    17.794 0.271    19.926   11.983 0.00150

Overall mean value across 
parameters 

0.035   6.29 0.085      18.97 0.072   16.19     22.69 0.00032 
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 4.6.1 Effects of Ignoring Latent Construct Effects 

This section presents the results of the estimation when the latent variables are ignored, 
and the resulting dependencies among the multidimensional outcomes are not considered. 
As discussed earlier in the first part of Section 4, this is equivalent to ignoring all 
potential self-selection effects, which then should corrupt all endogenous variable effects 
discussed in Section 4.3.3, and lead to inaccurate and inefficient estimation of other 
parameters as well. Ignoring the presence of latent variables is tantamount to the 
restriction in the GHDM model that all elements of the d


matrix and the ϖ  matrix in 

Equation (15) are zero (no effects of latent variables on any (and all) outcome(s)). But 
doing so immediately renders all elements of α  and Γ  unidentifiable, because the only 
way these elements are identified is by the relationship between the latent variable vector 

*z  and the observed outcomes. Thus, we also essentially are setting all elements of α  
and Γ  to zero in the restricted model. The resulting equivalent of Equation (15), which 
we will refer to as the independent model for ease, can be compared with the GHDM 
model using the adjusted composite log-likelihood ratio test (ADCLRT) value (see Pace 
et al., 2011 and Bhat, 2011 for more details on the ADCLRT statistic, which is the 
equivalent of the log-likelihood ratio test statistic when a composite marginal likelihood 
inference approach is used; this statistic has an approximate chi-squared asymptotic 
distribution).  

For the comparison of the GHDM and independent model coefficient estimates (vis-à-vis 
the true values of the experimental design), we estimate the independent model on the 
same 200 datasets as we estimated the GHDM model on earlier. Based on the results for 
the GHDM model, we decided to undertake this comparison only for the case of Q=3000 
observations. For each of the 200 data sets, we use the same set of permutations for the 
joint model and the independent model, so that we are able to appropriately compare the 
ability to recover parameters from the two models. We made this comparison between the 
two models only for those coefficients estimated in the independent model. The GHDM 
model mean APB is 4.19 relative to the independent model mean APB of 16.03 (the 
complete table results are available from the author). In addition to an APB comparison 
between the joint model and the independent model, we also compare the performance of 
the two models using the ADCLRT test. The ADCLRT statistic for the test between the 
two models has an approximate chi-squared distribution with 15 degrees of freedom. The 
corresponding table value for the chi-squared distribution is 32.8 at the 0.5% level of 
significance. In this paper, we identify the number of times (corresponding to the 200 
data sets) that the ADCLRT value rejects the independent model in favor of the joint 
model. The result indicates that the joint model rejects the independent model in all the 
200 data sets, further reinforcing the need to consider the GHDM model. 

 4.7 Procedure for Treatment Effects Based on Residential Choice 

The estimation results from the simulation experiment may be used to examine the 
differences between the GHDM and independent models as they relate to the implied 
effects of one outcome variable on another. To demonstrate the potential problems of 
ignoring latent variables, we examine the impact of residential location choice on auto 
ownership (other outcome effects may also be computed, but, because this is only a 
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simulation effort, we focus on one effect to demonstrate the potential biases accruing 
from ignoring jointness). This is helpful to obtain insights regarding whether, and how 
much, an independent model can bias the influence of an urban-like high density design 
on travel-related behaviors. An important approach to do so is the Average Treatment 
Effect (ATE) (see Heckman and Vytlacil, 2000 and Heckman et al., 2001).  

In the context of motorized vehicle ownership, the ATE measure provides the expected 
difference in motorized vehicle ownership for a random individual if s/he were located in 
a specific density configuration i as opposed to another density configuration ii ≠′ . The 
measure is estimated as follows: 
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ATE , 

where qia is the dummy variable for the density category i for the individual q, and 1qk is 

an index for auto ownership ),...,2 ,1 ,0( 11 ∞=qq kk  (the subscript ‘1’, consistent with the 

notation used earlier, indicates that auto ownership is the first count variable in the model 
system). Although the summation in the equation above extends until infinity, we 
consider counts only up to 1qk = 10. This should not affect the computations because the 

probabilities associated with higher motorized vehicle ownership levels are very close to 
zero.  

The analyst can compute the ATE measures for all the pairwise combinations of 
residential density category relocations. Here, we focus on the case when an individual in 
a rural location is transplanted to an urban location. The standard error of the ATE 
measure is obtained using bootstraps from the sampling distributions of the estimated 
parameters. The GHDM model estimates an ATE of -0.178 (standard error of 0.013), 
which implies that a random household that is shifted from a rural location to an urban 
location will, on average, reduce its motorized vehicle ownership level by 0.178 vehicles. 
The corresponding independent model estimate is much higher with an ATE of -0.338 
(standard error of 0.011), which indicates a much higher reduction in auto ownership 
because of a household move from a rural area to an urban area. This overestimation in 
the independent model is because the probability of residing in an urban area and the 
propensity to own autos are negatively correlated because of the latent green lifestyle 
propensity (GLP) latent construct (note that, in Figure 2b, GLP has a positive effect on 
the utility of residing in an urban area, and, in Figure 2a, GLP has a negative effect on 
auto ownership propensity). If this GLP construct is ignored (as in the independent 
model), the result is a transfer of the negative covariance due to the GLP construct to a 
much higher negative (and biased) ATE of urban dwelling on auto ownership count. 
Thus, accounting for endogeneity effects is not simply of academic interest, but can have 
substantial real implications for variable effects and subsequent policy analysis. 
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